Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Eridanus |
Right ascension | 04h 14m 04.867s [1] |
Declination | −31° 55′ 22.36″ [1] |
Apparent magnitude (V) | 11.51 [2] |
Astrometry | |
Proper motion (μ) | RA: 12.082 [3] mas/yr Dec.: 9.513 [3] mas/yr |
Parallax (π) | 1.6861 ± 0.4296 mas [3] |
Distance | 1900±225 ly (584±70 [4] pc) |
Details [4] | |
System | |
Age | 3.160±0.624 Gyr |
A1 | |
Mass | 1.25±0.05 M☉ |
Radius | 1.49±0.07 R☉ |
Luminosity | 3.39 L☉ |
Surface gravity (log g) | 4.18 cgs |
Temperature | 6,400±125 K |
Rotational velocity (v sin i) | 48.5 km/s |
A2 | |
Mass | 0.56±0.04 M☉ |
Radius | 0.52±0.04 R☉ |
Luminosity | 0.07 L☉ |
Surface gravity (log g) | 4.73 cgs |
Temperature | 3,923±100 K |
Rotational velocity (v sin i) | 17.5 km/s |
B1 | |
Mass | 1.30±0.08 M☉ |
Radius | 1.69±0.22 R☉ |
Luminosity | 3.95 L☉ |
Surface gravity (log g) | 4.12 cgs |
Temperature | 6,365±170 K |
Rotational velocity (v sin i) | 10.1 km/s |
B2 | |
Mass | 0.66±0.03 M☉ |
Radius | 0.62±0.02 R☉ |
Luminosity | 0.12 L☉ |
Surface gravity (log g) | 4.67 cgs |
Temperature | 4,290±110 K |
Rotational velocity (v sin i) | 3.8 km/s |
C1 | |
Mass | 1.23±0.10 M☉ |
Radius | 1.45±0.28 R☉ |
Luminosity | 2.74 L☉ |
Surface gravity (log g) | 4.24 cgs |
Temperature | 6,350±160 K |
Rotational velocity (v sin i) | 51.5 km/s |
C2 | |
Mass | 0.59±0.07 M☉ |
Radius | 0.56±0.07 R☉ |
Luminosity | 0.07 L☉ |
Surface gravity (log g) | 4.72 cgs |
Temperature | 3,889±190 K |
Rotational velocity (v sin i) | 20.9 km/s |
Other designations | |
Database references | |
SIMBAD | data |
TIC 168789840, also known as TYC 7037-89-1, [5] is a stellar system with six stars. [6] [4] Three pairs of binary stars circle a common barycenter. While other systems with three pairs of stars have been discovered, this was the first system where the stars can be observed eclipsing one another, as the Earth lies approximately on their planes of rotation. [5]
The Transiting Exoplanet Survey Satellite identified that the star system consisted of six eclipsing stars. [7] The discovery was announced in January 2021. It is approximately 1,900 light-years (584 pc) from Earth, in the constellation Eridanus, west of the river asterism's sharpest bend, Upsilon2 Eridani, often called Theemin. [8] To be seen the group needs strong magnification from Earth as is much fainter than red clump giant star Theemin and is about nine times further away.
Two sets of the binaries co-orbit relatively closely, while the third pair of stars takes 2,000 years to orbit the entire system barycenter. [6] [10] [11] The inner A pair and C pair orbit each other in 3.7 years. These are, as taken from the paired B stars, about 250 AU away (specifically the mean telescopic separation is 423 mas ) and the three lettered pairs, as groups, have been resolved (the three gaps made out). From A pair to C pair is calculated to be 4 AU ( ∼7 mas) apart, which means this gap should be resolvable using speckle interferometry which has not yet been achieved.
Note, the three binaries (here close pairs) A, B, and C are resolved only as systems, the pairs being just 6.9 R☉ (∼0.054 mas), 21.4 R☉ (∼0.168 mas), and 6.1 R☉ (∼0.047 mas) apart, respectively. [4]
According to Jeanette Kazmierczak of NASA's Goddard Space Flight Center:
|
The primary stars of all three close binaries are slightly hotter and brighter than the Sun, [7] while the secondary stars are much cooler and dimmer. [4] Because the two closely bound pairs are so close, only the third, more distant pair could have planets. [6] The primaries are all beginning to evolve away from the main sequence, while the less massive and longer-lived secondaries are all still firmly on the main sequence and fusing hydrogen in their cores. [4]
Castor is the second-brightest object in the zodiac constellation of Gemini. It has the Bayer designation α Geminorum, which is Latinised to Alpha Geminorum and abbreviated Alpha Gem or α Gem. With an apparent visual magnitude of 1.58, it is one of the brightest stars in the night sky. Castor appears singular to the naked eye, but it is actually a sextuple star system organized into three binary pairs. Although it is the 'α' (alpha) member of the constellation, it is half a magnitude fainter than 'β' (beta) Geminorum, Pollux.
Iota Orionis is a multiple star system in the equatorial constellation of Orion the hunter. It is the eighth-brightest member of Orion with an apparent visual magnitude of 2.77 and also the brightest member of the asterism known as Orion's Sword. It is a member of the NGC 1980 open cluster. From parallax measurements, it is located at a distance of roughly 1,340 light-years from the Sun.
9 Andromedae, abbreviated 9 And by convention, is a variable binary star system in the northern constellation Andromeda. 9 Andromedae is the Flamsteed designation, while it bears the variable star designation AN Andromedae, or AN And. The maximum apparent visual magnitude of the system is 5.98, which places it near the lower limit of visibility to the human eye. Based upon an annual parallax shift of 7.1 mas, it is located 460 light years from the Earth.
VV Cephei, also known as HD 208816, is an eclipsing binary star system located in the constellation Cepheus. It is both a B[e] star and shell star.
Gamma Persei is a binary star system in the constellation Perseus. The combined apparent visual magnitude of the pair is +2.9, making it the fourth-brightest member of the constellation. The distance to this system is of roughly 221 light-years with a 1% margin of error. About 4° to the north of Gamma Persei is the radiance point for the annual Perseid meteor shower.
HD 109749 is a binary star system about 206 light years away in the constellation of Centaurus. The pair have a combined apparent visual magnitude of 8.08, which is too faint to be visible to the naked eye. The primary component has a close orbiting exoplanet companion. The system is drifting closer with a heliocentric radial velocity of −13.2 km/s.
IU Aurigae is a triple star system in the constellation Auriga, consisting of an eclipsing binary pair orbiting a third component with a period of 335 years. This system is too faint to be viewed with the naked eye, having a peak apparent visual magnitude of 8.19. The eclipsing pair form a Beta Lyrae-type semidetached binary of two Bp stars with a period of 1.81147435 days. During the primary eclipse, the visual magnitude of the system drops to 8.89, while for the secondary it decreases to 8.74. The third component is a massive object with 17–18 M☉, and may actually be a binary – which would make this a quadruple star system.
S Monocerotis, also known as 15 Monocerotis, is a massive multiple and variable star system located in the constellation Monoceros. It is the brightest star in the Christmas Tree open cluster in the area catalogued as NGC 2264.
WR 22, also known as V429 Carinae or HR 4188, is an eclipsing binary star system in the constellation Carina. The system contains a Wolf-Rayet (WR) star that is one of the most massive and most luminous stars known, and is also a bright X-ray source due to colliding winds with a less massive O class companion. Its eclipsing nature and apparent magnitude make it very useful for constraining the properties of luminous hydrogen-rich WR stars.
V1429 Aquilae is a candidate luminous blue variable multiple star system located in the constellation of Aquila. It is often referred to by its Mount Wilson Observatory catalog number as MWC 314. It is a hot luminous star with strong emission lines in its spectrum.
κ Delphini is a binary star system in the constellation Delphinus. It is faintly visible to the naked eye, with an apparent magnitude of 5.05. It is located about 98.8 light-years away, based on its parallax.
14 Lacertae is a binary star system in the northern constellation Lacerta, located around 1,600 light years away. It has the variable star designation V360 Lacertae; 14 Lacertae is the Flamsteed designation. The system is barely visible to the naked eye in good seeing conditions, having a peak apparent visual magnitude of 5.91. It is moving closer to the Earth with a heliocentric radial velocity of −16 km/s.
31 Cygni, also known as ο1 Cygni, Omicron1 Cygni, ο2 Cygni or V695 Cygni, is a ternary star system about 750 light years away in the constellation Cygnus.
W Serpentis is an eclipsing binary star in the constellation Serpens. It is always too faint to be seen with the naked eye, varying between apparent magnitudes 8.42 and 10.2 with a period of just over 14 days. This is mainly due to eclipses; however, variations in its period indicate there are some innate changes in luminosity of one or both component stars as they interact with each other, and it has been difficult to disentangle the light to determine their nature. The period is increasing by 14 seconds a year, indicating that a massive amount of material is being transferred from the larger fainter star to the smaller brighter one.
AC Herculis, is an RV Tauri variable and spectroscopic binary star in the constellation of Hercules. It varies in brightness between apparent magnitudes 6.85 and 9.0.
Phi Phoenicis, Latinized from φ Phoenicis, is a binary star system in the southern constellation of Phoenix. It is faintly visible to the naked eye with an apparent visual magnitude of 5.1. Based upon an annual parallax shift of 10.185 mas as seen from Earth, it is located approximately 320 light years from the Sun. It is moving away with a heliocentric radial velocity of 10.4 km/s.
TW Andromedae is an eclipsing binary star, classified also as an Algol variable star, in the constellation Andromeda. Its brightness varies with a period of 4.12 days, and has a typical brightness of magnitude 8.98 but decreasing down to a magnitude of 11.04 during the main eclipse.
AD Andromedae is an eclipsing binary in the constellation Andromeda. Its maximum apparent visual magnitude is 11.2, but it shows a decrease of 0.62 magnitudes during the main eclipse and 0.58 during the secondary one. It is classified as a Beta Lyrae variable star with a period of almost one day.
HD 139319 is a ternary system composed of the binary Algol variable star known as TW Draconis, and a main-sequence companion star at a separation of 3 arcseconds. The system lies in the constellation of Draco about 540 light years away.
RS Sagittarii is an eclipsing binary star system in the southern constellation of Sagittarius, abbreviated RS Sgr. It is a double-lined spectroscopic binary with an orbital period of 2.416 days, indicating that the components are too close to each other to be individually resolved. The system has a combined apparent visual magnitude of 6.01, which is bright enough to be faintly visible to the naked eye. During the primary eclipse the brightness drops to magnitude 6.97, while the secondary eclipse is of magnitude 6.28. The distance to this system is approximately 1,420 light years based on parallax measurements.
The system, also called TIC 168789840, is the first known sextuple composed of three sets of eclipsing binaries, stellar pairs whose orbits tip into our line of sight so we observe the stars alternatively passing in front of each other.
But only one of the pairs could have any planets. Two of the system's binaries orbit extremely close to one another, forming their own quadruple subsystem. Any planets there would likely be ejected or engulfed by one of the four stars. The third binary is farther out, orbiting the other two once every 2,000 years or so, making it a possible exoplanetary haven.
The primary stars in all three binaries are all slightly bigger and more massive than the Sun and about as hot. The system, also called TIC 168789840, is located about 1,900 light-years away in the constellation Eridanus.
'Prior to the discovery of TIC 168789840, there were 17 known sextuple star systems according to the June 2020 update of the Multiple Star Catalog,' lead author Dr. Brian Powell of NASA's Goddard Space Flight Center and colleagues wrote in their paper.