TMED5

Last updated
TMED5
Identifiers
Aliases TMED5 , CGI-100, p28, p24g2, transmembrane p24 trafficking protein 5
External IDs OMIM: 616876 MGI: 1921586 HomoloGene: 4996 GeneCards: TMED5
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001167830
NM_016040

NM_028876
NM_001347383
NM_001361466
NM_001361467

RefSeq (protein)

NP_001161302
NP_057124

NP_001334312
NP_083152
NP_001348395
NP_001348396

Location (UCSC) Chr 1: 93.15 – 93.18 Mb Chr 5: 108.25 – 108.28 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Transmembrane emp24 domain-containing protein 5 is a protein that in humans is encoded by the TMED5 gene. [5]

Contents

Gene

General properties

TMED5 (transmembrane emp24 domain-containing protein 5) is also known as p28, p24g2, and CGI-100. [5] The human gene spans 30,775 base pairs over 4 exons and 3 introns for transcript variant 1, 5 exons and 4 introns for transcript variant 2, and it is located on the minus strand of chromosome 1, at 1p22.1. [6]

Expression

TMED5 has ubiquitous expression with transcripts detected in 246 tissues. [7] Androgen deprivation led to lower expression in mice splenocytes compared to the control. [8] Human dendritic cells infected with Chlamydia pneumoniae showed an absence of TMED5 expression compared to uninfected dendritic cells which had moderate expression. [9]

View of human TMED5 gene isoform 1 and 2 with promoter and exon locations. TMED5 promoter location schematic new.png
View of human TMED5 gene isoform 1 and 2 with promoter and exon locations.
Conceptual translation of TMED5. Labeled are the start and stop codon, exon splice sites, domains and motifs, polyadenylation signals, predicted RNA and miRNA binding proteins, and predicted post-translational modifications. Bolded amino acids and nucleotides represent highly conserved amongst distant orthologs. TMED5 conceptual translation.pdf
Conceptual translation of TMED5. Labeled are the start and stop codon, exon splice sites, domains and motifs, polyadenylation signals, predicted RNA and miRNA binding proteins, and predicted post-translational modifications. Bolded amino acids and nucleotides represent highly conserved amongst distant orthologs.

mRNA transcript

TMED5 has two coding transcript variants and one non-coding transcript variant produced by alternative splicing. [7] Isoform 1 has 4 exons and encodes a protein 229 amino acids. Isoform 2 has 5 exons and encodes a protein with a shorter C-terminus 193 amino acids due to an additional exon causing a frameshift. [5]

Protein

General properties

TMED5 contains a signal peptide. [10] After cleavage of the signal peptide, TMED5 isoform 1 is composed of 202 amino acids and has a molecular weight of ~23 kDa. [11] The mature form of isoform 2 is composed of 166 amino acids and has a molecular weight of ~19 kDa. [12] Both isoforms have an isolectric point of approximately 4.6. [13]

Composition

Compared to the reference set of human proteins, TMED5 has fewer alanine and proline residues but more aspartic acid and phenylalanine residues. [14] TMED5 isoform 1 has one hydrophobic segment that corresponds with its transmembrane region. [14]

Domains and motifs

TMED5 protein isoform 1 visual made via Protter. TMED5 protein visual made via Protter.png
TMED5 protein isoform 1 visual made via Protter.
TMED5 protein isoform 2 visual made via Protter. Protter TMED5 isoform 2 visual.png
TMED5 protein isoform 2 visual made via Protter.

TMED5 isoform 1 is a single-pass transmembrane protein and is composed of a lumenal domain, one transmembrane (helical) domain, and a cytoplasmic domain. [7]

TMED5 is part of the emp24/gp25L/p24 family/GOLD family protein. [7]

TMED5 contains a di-lysine motif and predicted NLS in its cytoplasmic tail. [16] [17]

Structure

The structure of TMED5 isoform 1 consists of beta strands making up the lumenal region, disparate coil-coiled regions, alpha helices making up the transmembrane domain, and alpha helices making up some of the cytoplasmic domain. [18] [19]

Predicted tertiary structure of TMED5 generated by Phyre2. Signal peptide is highlighted in yellow. GOLD domain in the lumen is shown to be made up of beta sheets. Transmembrane domain is grayed out followed by the short cytosolic sequence. Predicted tertiary structure of TMED5 generated by Phyre2.png
Predicted tertiary structure of TMED5 generated by Phyre2. Signal peptide is highlighted in yellow. GOLD domain in the lumen is shown to be made up of beta sheets. Transmembrane domain is grayed out followed by the short cytosolic sequence.

Post-translational modifications

TMED5 has two predicted phosphorylation sites in the cytosolic region, Ser227 and Thr229. [21] [22]

Localization

TMED5's predicted location is in the plasma membrane, with an extracellular N-terminus and intracellular C-terminus. TMED5's localization is predicted to be cytoplasmic, but has been found in some tissues to be located in the nucleus. [17] [23]

Interacting proteins

The following table provides a list of proteins most likely to interact with TMED5. Not shown in the table are Wnt family proteins which are known to interact with the p24 protein family. [24]

Protein NameProtein AbrevDB SourceSpeciesEvidenceInteractionPubMed ID
Transmembrane emp24 domain-containing protein 2 TMED2 IntAct Homo sapiensAnti tag coimmunoprecipitation [25] Association28514442
Transmembrane emp24 domain-containing protein 10 TMED10 IntAct Mus musculus Anti tag coimmunoprecipitation [26] Association26496610
Protein ERGIC-53 LMAN1 MINT Homo sapiensFluorescence microscopy [27] Colocalization22094269
C-X-C motif chemokine 9 CXCL9 IntAct Homo sapiensValidated two hybrid [28] Physical Association32296183
Protein arginine N-methyltransferase 6 PRMT6 MINT Homo sapiensTwo hybrid [29] Physical Association23455924
Phosphatidylethanolamine-binding protein 1 PEBP1 IntAct Homo sapiensAnti tag coimmunoprecipitation [30] Association31980649
Kinase suppressor of Ras 1 KSR1 IntAct Homo sapiensAnti tag coimmunoprecipitation [31] Association27086506
Endothelial lipase LIPG IntAct Mus musculus Anti tag coimmunoprecipitation [32] Association28514442
Histone-lysine N-methyltransferase PRDM16 Prdm16 MINT Mus musculus Anti tag coimmunoprecipitation [33] Association30462309
Intracellular growth locus, subunit C iglC2 MINT Francisella tularensis Two hybrid pooling approach [34] Physical Association26714771
ORF9CORF9C BioGRID SARS-Cov-2 Affinity Capture-MS [35] Association32353859
Uncharacterized protein 14 ORF14 IntAct SARS-Cov-2 Pull down [35] Association32353859

Function and clinical significance

TMED5 is a part of the p24 protein family whose general functions are protein trafficking for the secretory pathway. [36] TMED5 is thought to be necessary in the formation of the Golgi into a ribbon. [37]

Glycosylphosphatidylinositol-anchored proteins (GPI-AP) depend on p24 cargo receptors for transport from the ER to the Golgi. [38] Knockdown of p24γ2 (a mouse ortholog of TMED5) in mice resulted in impaired transport of GPI-AP. The study concluded that the α-helical region of p24γ2 binds GPI which is necessary to incorporate it into COPII transport vesicles. [38]

TMED5 is reported to be necessary for the secretion of Wnt ligands. TMED5 has been found to interact with WNT7B, activating the canonical WNT-CTNNB1/β-catenin signaling pathway. [39] This pathway is linked to numerous cancers because upregulation of the Wnt/β-catenin signaling pathway leads to cytosolic accumulation of β-catenin, promoting cellular proliferation. [40]

Research has identified bladder cancer to have a common chromosomal amplification at 1p21-22 and showed significant upregulation of TMED5. [41]

Evolution

Homology

Paralogs

TMED5 paralogs include TMED1, TMED2, TMED3, TMED4, TMED6, TMED7, TMED8, TMED9, and TMED10. [42] All paralogs share the conserved transmembrane domain and contain the characteristic GOLD domain as included in the emp24/gp25L/p24 family/GOLD family proteins. [7]

TMED5 evolutionary graph shows evolutionary rate. Cytochrome C is shown to represent a slow-evolutionary rate and Fibrinogen alpha represents a fast-evolutionary rate. TMED5 is shown to have a fast-evolutionary rate similar to Fibrinogen alpha. Estimated date of divergence for paralogs were plotted: TMED1 diverged ~64 million years ago (MYA), TMED3 diverged ~118 MYA, and TMED7 diverged ~122 MYA. TMED5 Evolutionary graph.png
TMED5 evolutionary graph shows evolutionary rate. Cytochrome C is shown to represent a slow-evolutionary rate and Fibrinogen alpha represents a fast-evolutionary rate. TMED5 is shown to have a fast-evolutionary rate similar to Fibrinogen alpha. Estimated date of divergence for paralogs were plotted: TMED1 diverged ~64 million years ago (MYA), TMED3 diverged ~118 MYA, and TMED7 diverged ~122 MYA.

Orthologs

TMED5 is found to be conserved in vertebrates, invertebrates, plants and fungi, and there are 243 known organisms that have orthologs with the gene. [5] The following table provides a sample of the ortholog space of TMED5.

Genus and SpeciesNCBI Accession NumberDate of Divergence (MYA) [43] Sequence LengthSequence Identity [42]
Homo sapiens (Human) NP_057124.3 0229100
Pan troglodytes (Chimpanzee) XP_001154650.1 622999.6
Mus musculus (Mouse) NP_083152.1 8922990
Monodelphis domestica (Gray short-tailed opossum) XP_016284519.1 16022884
Gallus gallus (Chicken) NP_001007957.1 31822683
Gekko japonicus (Gekko) XP_015268825.1 31824573.1
Xenopus tropicalis (Western clawed frog) XP_031755940.1 35122367.7
Danio rerio (Zebrafish) NP_956697.1 43322565.1
Rhincodon typus (Whale shark) XP_020385910.1 46522466.8
Octopus vulgaris (Octopus) XP_029646555.1 73623942.5
Cryptotermes secundus (Termite) XP_023712535.1 73623537.5
Caenorhabditis elegans (Roundworm) NP_502288.1 73623437.3
Drosophila mojavensis (Fruit fly) XP_002009472.2 73623936.3
Eufriesea mexicana (Orchid bee) XP_017762298.1 73622726.8
Trichoplax adhaerens XP_002108774.1 74719332.1
Rhizopus microsporus XP_023464765.1 101719930.2
Coprinopsis cinerea (Gray shag mushroom) XP_001836898.2 101719928.5
Kluyveromyces lactis XP_453709.1 101720828.1
Rhodamnia argentea (Malletwood) XP_030545696.1 127521728.9
Quercus suber (Cork oak) XP_023882547.1 127527728.7
Vitis riparia (Riverbank grape) XP_034686416.1 127521527.3

Related Research Articles

<span class="mw-page-title-main">TMEM8B</span> Protein-coding gene in humans

Transmembrane protein 8B is a protein that in humans is encoded by the TMEM8B gene. It encodes for a transmembrane protein that is 338 amino acids long, and is located on human chromosome 9. Aliases associated with this gene include C9orf127, NAG-5, and NGX61.

<span class="mw-page-title-main">TCF/LEF family</span> Group of genes

The TCF/LEF family is a group of genes that encode transcription factors which bind to DNA through a SOX-like high mobility group domain. They are involved in the Wnt signaling pathway, particularly during embryonic and stem-cell development, but also had been found to play a role in cancer and diabetes. TCF/LEF factors recruit the coactivator beta-catenin to enhancer elements of genes they target. They can also recruit members of the Groucho family of corepressors.

<span class="mw-page-title-main">Fam158a</span> Protein-coding gene in the species Homo sapiens

UPF0172 protein FAM158A, also known as c14orf122 or CGI112, is a protein that in humans is encoded by the FAM158A gene located on chromosome 14q11.2.

<span class="mw-page-title-main">KIAA0922</span> Protein-coding gene in the species Homo sapiens

Transmembrane protein 131-like, alternatively named uncharacterized protein KIAA0922, is an integral transmembrane protein encoded by the human gene KIAA0922 that is significantly conserved in eukaryotes, at least through protists. Although the function of this gene is not yet fully elucidated, initial microarray evidence suggests that it may be involved in immune responses. Furthermore, its paralog, prolyl endopeptidase (PREP) whose function is known, provides clues as to the function of TMEM131L.

<span class="mw-page-title-main">SLC46A3</span> Protein-coding gene in the species Homo sapiens

Solute carrier family 46 member 3 (SLC46A3) is a protein that in humans is encoded by the SLC46A3 gene. Also referred to as FKSG16, the protein belongs to the major facilitator superfamily (MFS) and SLC46A family. Most commonly found in the plasma membrane and endoplasmic reticulum (ER), SLC46A3 is a multi-pass membrane protein with 11 α-helical transmembrane domains. It is mainly involved in the transport of small molecules across the membrane through the substrate translocation pores featured in the MFS domain. The protein is associated with breast and prostate cancer, hepatocellular carcinoma (HCC), papilloma, glioma, obesity, and SARS-CoV. Based on the differential expression of SLC46A3 in antibody-drug conjugate (ADC)-resistant cells and certain cancer cells, current research is focused on the potential of SLC46A3 as a prognostic biomarker and therapeutic target for cancer. While protein abundance is relatively low in humans, high expression has been detected particularly in the liver, small intestine, and kidney.

<span class="mw-page-title-main">DEPDC1B</span> Protein-coding gene in the species Homo sapiens

DEP Domain Containing Protein 1B also known as XTP1, XTP8, HBV XAg-Transactivated Protein 8, [formerly referred to as BRCC3] is a human protein encoded by a gene of similar name located on chromosome 5.

TMEM143 is a protein that in humans is encoded by TMEM143 gene. TMEM143, a dual-pass protein, is predicted to reside in the mitochondria and high expression has been found in both human skeletal muscle and the heart. Interaction with other proteins indicate that TMEM143 could potentially play a role in tumor suppression/expression and cancer regulation.

<span class="mw-page-title-main">TMCO6</span> Protein-coding gene in the species Homo sapiens

Transmembrane and coiled-coil domain 6, TMCO6, is a protein that in humans is encoded by the TMCO6 gene with aliases of PRO1580, HQ1580 or FLJ39769.1.

<span class="mw-page-title-main">C12orf40</span> Protein-coding gene in humans

C12orf40, also known as Chromosome 12 Open Reading Frame 40, HEL-206, and Epididymis Luminal Protein 206 is a protein that in humans is encoded by the C12orf40 gene.

Transmembrane Protein 217 is a protein encoded by the gene TMEM217. TMEM217 has been found to have expression correlated with the lymphatic system and endothelial tissues and has been predicted to have a function linked to the cytoskeleton.

<span class="mw-page-title-main">RNF43</span> Protein-coding gene in the species Homo sapiens

Ring finger protein 43 is a protein that in humans is encoded by the RNF43 gene.

<span class="mw-page-title-main">TMEM171</span> Protein-coding gene in the species Homo sapiens

Transmembrane protein 171 (TMEM171) is a protein that in humans is encoded by the TMEM171 gene.

<span class="mw-page-title-main">C2orf16</span> Protein-coding gene in the species Homo sapiens

C2orf16 is a protein that in humans is encoded by the C2orf16 gene. Isoform 2 of this protein is 1,984 amino acids long. The gene contains 1 exon and is located at 2p23.3. Aliases for C2orf16 include Open Reading Frame 16 on Chromosome 2 and P-S-E-R-S-H-H-S Repeats Containing Sequence.

<span class="mw-page-title-main">WD Repeat and Coiled Coil Containing Protein</span> Protein-coding gene in humans

WD Repeat and Coiled-coiled containing protein (WDCP) is a protein which in humans is encoded by the WDCP gene. The function of the protein is not completely understood, but WDCP has been identified in a fusion protein with anaplastic lymphoma kinase found in colorectal cancer. WDCP has also been identified in the MRN complex, which processes double-stranded breaks in DNA.

<span class="mw-page-title-main">SAAL1</span> Protein-coding gene in the species Homo sapiens

Serum amyloid A-like 1 is a protein in humans encoded by the SAAL1 gene.

<span class="mw-page-title-main">TMEM101</span>

Transmembrane protein 101 (TMEM101) is a protein that in humans is encoded by the TMEM101 gene. The TMEM101 protein has been demonstrated to activate the NF-κB signaling pathway. High levels of expression of TMEM101 have been linked to breast cancer.

<span class="mw-page-title-main">TBC1D30</span> Protein-coding gene in the species Homo sapiens

TBC1D30 is a gene in the human genome that encodes the protein of the same name. This protein has two domains, one of which is involved in the processing of the Rab protein. Much of the function of this gene is not yet known, but it is expressed mostly in the brain and adrenal cortex.

<span class="mw-page-title-main">TMEM212</span> Protein-coding gene in the species Homo sapiens

Transmembrane protein 212 is a protein that in humans is encoded by the TMEM212 gene. The protein consists of five transmembrane domains and localizes in the plasma membrane and endoplasmic reticulum. TMEM212 has orthologs in vertebrates but not invertebrates. TMEM212 has been associated with sporadic Parkinson's disease, facial processing, and adiposity in African Americans.

<span class="mw-page-title-main">TMEM144</span> Transmembrane Protein 144

Transmembrane Protein 144 (TMEM144) is a protein in humans encoded by the TMEM144 gene.

<span class="mw-page-title-main">ARMH1</span> Novel human gene

Armadillo-like Helical Domain Containing 1 (ARMH1) is a protein which in humans is encoded by chromosome 1 open reading frame 228, also known as the ARMH1 gene. The gene shows expression levels significantly higher in bone marrow, lymph nodes, and testis. Currently the function of the gene and subsequent protein is still uncertain.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000117500 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000063406 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 National Center for Biotechnology Information. "Transmembrane p24 trafficking protein 5". NCBI Gene.
  6. Weizmann Institute of Science. "TMED5 Gene". Gene Cards Human Gene Database.
  7. 1 2 3 4 5 UniProt Consortium. "TMED5 gene". UniProtKB.
  8. National Center for Biotechnology Information (NCBI). "GDS5301 Expression Profile". Gene Expression Omnibus Repository.
  9. National Center for Biotechnology Information (NCBI). "GDS3573 Expression Profile". Gene Expression Omnibus Repository.
  10. Center of Biological Sequential Analysis. "SignalP-5.0 Server". Prediction Servers.
  11. National Center for Biotechnology Information. "Transmembrane emp24 domain-containing protein 5 isoform 1 precursor". NCBI Protein.
  12. National Center for Biotechnology Information. "Transmembrane emp24 domain-containing protein 5 isoform 2 precursor". NCBI Protein.
  13. Swiss Institute of Bioinformatics. "Compute pI/Mw Tool". ExPASy.
  14. 1 2 European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI). "Statistical Analysis of Protein Sequences (SAPS)".
  15. 1 2 Protter: interactive protein feature visualization and integration with experimental proteomic data. Omasits U, Ahrens CH, Müller S, Wollscheid B. Bioinformatics. 2014 Mar 15;30(6):884-6. doi : 10.1093/bioinformatics/btt607
  16. The Eukaryotic Liner Motif (ELM) resource for Functional Sites in Proteins. "ELM prediction".
  17. 1 2 Prediction of Protein Sorting Signals and Localization Sites in Amino Acid Sequences. "PSORT II Prediction". PSORT WWW Server.
  18. Max Planck Institute (MPI) for Developmental Biology, Tübingen, Germany. "Ali2D". MPI Bioinformatics Toolkit.
  19. University of Michigan. "I-TASSER Protein Structure & Function Predictions". Zhang Lab.
  20. Kelley, L., Mezulis, S., Yates, C. et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10, 845–858 (2015). doi : 10.1038/nprot.2015.053
  21. Swiss Institute of Bioinformatics. "MyHits Motif Scan". ExPASy.
  22. Blom, Nikolaj. "Net Phos 3.1 Server". DTU Bioinformatics.
  23. Tissue Atlas. "Tissue expression of TMED5". The Human Protein Atlas.
  24. Buechling, T., Chaudhary, V., Spirohn, K., Weiss, M. and Boutros, M. (2011), p24 proteins are required for secretion of Wnt ligands. EMBO reports, 12: 1265-1272. doi : 10.1038/embor.2011.212
  25. Huttlin, E. L., Bruckner, R. J., Paulo, J. A., Cannon, J. R., Ting, L., Baltier, K., Colby, G., Gebreab, F., Gygi, M. P., Parzen, H., Szpyt, J., Tam, S., Zarraga, G., Pontano-Vaites, L., Swarup, S., White, A. E., Schweppe, D. K., Rad, R., Erickson, B. K., Obar, R. A., … Harper, J. W. (2017). Architecture of the human interactome defines protein communities and disease networks. Nature, 545(7655), 505–509. doi : 10.1038/nature22366
  26. Hein, M. Y., Hubner, N. C., Poser, I., Cox, J., Nagaraj, N., Toyoda, Y., Gak, I. A., Weisswange, I., Mansfeld, J., Buchholz, F., Hyman, A. A., & Mann, M. (2015). A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163(3), 712–723. doi : 10.1016/j.cell.2015.09.053
  27. Buechling, T., Chaudhary, V., Spirohn, K., Weiss, M., & Boutros, M. (2011). p24 proteins are required for secretion of Wnt ligands. EMBO reports, 12(12), 1265–1272. doi : 10.1038/embor.2011.212
  28. Luck, K., Kim, D. K., Lambourne, L., Spirohn, K., Begg, B. E., Bian, W., Brignall, R., Cafarelli, T., Campos-Laborie, F. J., Charloteaux, B., Choi, D., Coté, A. G., Daley, M., Deimling, S., Desbuleux, A., Dricot, A., Gebbia, M., Hardy, M. F., Kishore, N., Knapp, J. J., … Calderwood, M. A. (2020). A reference map of the human binary protein interactome. Nature, 580(7803), 402–408. doi : 10.1038/s41586-020-2188-x
  29. Weimann, M., Grossmann, A., Woodsmith, J., Özkan, Z., Birth, P., Meierhofer, D., Benlasfer, N., Valovka, T., Timmermann, B., Wanker, E. E., Sauer, S., & Stelzl, U. (2013). A Y2H-seq approach defines the human protein methyltransferase interactome. Nature methods, 10(4), 339–342. doi : 10.1038/nmeth.2397
  30. Kennedy, S. A., Jarboui, M. A., Srihari, S., Raso, C., Bryan, K., Dernayka, L., Charitou, T., Bernal-Llinares, M., Herrera-Montavez, C., Krstic, A., Matallanas, D., Kotlyar, M., Jurisica, I., Curak, J., Wong, V., Stagljar, I., LeBihan, T., Imrie, L., Pillai, P., Lynn, M. A., … Kolch, W. (2020). Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nature communications, 11(1), 499. doi : 10.1038/s41467-019-14224-9
  31. Bryan, K., Jarboui, M. A., Raso, C., Bernal-Llinares, M., McCann, B., Rauch, J., Boldt, K., & Lynn, D. J. (2016). HiQuant: Rapid Postquantification Analysis of Large-Scale MS-Generated Proteomics Data. Journal of proteome research, 15(6), 2072–2079. doi : 10.1021/acs.jproteome.5b01008
  32. Huttlin, E. L., Bruckner, R. J., Paulo, J. A., Cannon, J. R., Ting, L., Baltier, K., Colby, G., Gebreab, F., Gygi, M. P., Parzen, H., Szpyt, J., Tam, S., Zarraga, G., Pontano-Vaites, L., Swarup, S., White, A. E., Schweppe, D. K., Rad, R., Erickson, B. K., Obar, R. A., … Harper, J. W. (2017). Architecture of the human interactome defines protein communities and disease networks. Nature, 545(7655), 505–509. doi : 10.1038/nature22366
  33. Ivanochko, D., Halabelian, L., Henderson, E., Savitsky, P., Jain, H., Marcon, E., Duan, S., Hutchinson, A., Seitova, A., Barsyte-Lovejoy, D., Filippakopoulos, P., Greenblatt, J., Lima-Fernandes, E., & Arrowsmith, C. H. (2019). Direct interaction between the PRDM3 and PRDM16 tumor suppressors and the NuRD chromatin remodeling complex. Nucleic acids research, 47(3), 1225–1238. doi : 10.1093/nar/gky1192
  34. Wallqvist, A., Memišević, V., Zavaljevski, N., Pieper, R., Rajagopala, S. V., Kwon, K., Yu, C., Hoover, T. A., & Reifman, J. (2015). Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors. BMC genomics, 16, 1106. doi : 10.1186/s12864-015-2351-1
  35. 1 2 Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., Kim, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. doi : 10.1038/s41586-020-2286-9
  36. Pastor-Cantizano, N., Montesinos, J.C., Bernat-Silvestre, C. et al. p24 family proteins: key players in the regulation of trafficking along the secretory pathway. Protoplasma 253, 967–985 (2016). doi : 10.1007/s00709-015-0858-6
  37. Koegler, E., Bonnon, C., Waldmeier, L., Mitrovic, S., Halbeisen, R. and Hauri, H.‐P. (2010), p28, A Novel ERGIC/cis Golgi Protein, Required for Golgi Ribbon Formation. Traffic, 11: 70-89. doi : 10.1111/j.1600-0854.2009.01009.x
  38. 1 2 Theiler, R., Fujita, M., Nagae, M., Yamaguchi, Y., Maeda, Y., & Kinoshita, T. (2014). The α-helical region in p24γ2 subunit of p24 protein cargo receptor is pivotal for the recognition and transport of glycosylphosphatidylinositol-anchored proteins. The Journal of biological chemistry, 289(24), 16835–16843. doi : 10.1074/jbc.M114.568311
  39. Zhen Yang, Qi Sun, Junfei Guo, Shixing Wang, Ge Song, Weiying Liu, Min Liu & Hua Tang (2019) GRSF1-mediated MIR-G-1 promotes malignant behavior and nuclear autophagy by directly upregulating TMED5 and LMNB1 in cervical cancer cells, Autophagy, 15:4, 668-685, doi : 10.1080/15548627.2018.1539590
  40. Pai, S.G., Carneiro, B.A., Mota, J.M. et al. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol 10, 101 (2017). doi : 10.1186/s13045-017-0471-6
  41. Scaravilli, M., Asero, P., Tammela, T.L. et al. Mapping of the chromosomal amplification 1p21-22 in bladder cancer. BMC Res Notes 7, 547 (2014). doi : 10.1186/1756-0500-7-547
  42. 1 2 National Center for Biotechnology Information. "Standard Protein BLAST".
  43. Temple University Center of Biodiversity. "Pairwise Divergence Time". Timetree: The Timescale of Life.