Fibrinogen alpha chain

Last updated
FGA
Protein FGA PDB 1fza.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases FGA , Fib2, fibrinogen alpha chain
External IDs OMIM: 134820 MGI: 1316726 HomoloGene: 428 GeneCards: FGA
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000508
NM_021871

NM_001111048
NM_010196

RefSeq (protein)

NP_000499
NP_068657

NP_001104518
NP_034326

Location (UCSC) Chr 4: 154.58 – 154.59 Mb Chr 3: 82.93 – 82.94 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Fibrinogen alpha chain is a protein that in humans is encoded by the FGA gene.

Function

The protein encoded by this gene is the alpha component of fibrinogen, a blood-borne glycoprotein composed of three pairs of nonidentical polypeptide chains. Following vascular injury, fibrinogen is cleaved by thrombin to form fibrin, which is the most abundant component of blood clots. In addition, various cleavage products of fibrinogen and fibrin regulate cell adhesion and spreading, display vasoconstrictor and chemotactic activities, and are mitogens for several cell types. Mutations in this gene lead to several disorders, including dysfibrinogenemia, hypofibrinogenemia, afibrinogenemia, and renal amyloidosis. Alternative splicing results in two isoforms that vary in the carboxy-terminus. [5]

Interactions

Fibrinogen alpha chain has been shown to interact with tissue plasminogen activator. [6] [7]

See also

Related Research Articles

<span class="mw-page-title-main">Coagulation</span> Process of formation of blood clots

Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It potentially results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The mechanism of coagulation involves activation, adhesion and aggregation of platelets, as well as deposition and maturation of fibrin.

<span class="mw-page-title-main">Fibrin</span> Fibrous protein involved in blood coagulation

Fibrin is a fibrous, non-globular protein involved in the clotting of blood. It is formed by the action of the protease thrombin on fibrinogen, which causes it to polymerize. The polymerized fibrin, together with platelets, forms a hemostatic plug or clot over a wound site.

<span class="mw-page-title-main">Fibrinogen</span> Soluble protein complex in blood plasma and involved in clot formation

Fibrinogen is a glycoprotein complex, produced in the liver, that circulates in the blood of all vertebrates. During tissue and vascular injury, it is converted enzymatically by thrombin to fibrin and then to a fibrin-based blood clot. Fibrin clots function primarily to occlude blood vessels to stop bleeding. Fibrin also binds and reduces the activity of thrombin. This activity, sometimes referred to as antithrombin I, limits clotting. Fibrin also mediates blood platelet and endothelial cell spreading, tissue fibroblast proliferation, capillary tube formation, and angiogenesis and thereby promotes revascularization and wound healing.

<span class="mw-page-title-main">Thrombin</span> Enzyme involved in blood coagulation in humans

Thrombin is a serine protease, an enzyme that, in humans, is encoded by the F2 gene.

<span class="mw-page-title-main">Antithrombin</span> Mammalian protein found in Homo sapiens

Antithrombin (AT) is a small glycoprotein that inactivates several enzymes of the coagulation system. It is a 464-amino-acid protein produced by the liver. It contains three disulfide bonds and a total of four possible glycosylation sites. α-Antithrombin is the dominant form of antithrombin found in blood plasma and has an oligosaccharide occupying each of its four glycosylation sites. A single glycosylation site remains consistently un-occupied in the minor form of antithrombin, β-antithrombin. Its activity is increased manyfold by the anticoagulant drug heparin, which enhances the binding of antithrombin to factor IIa (thrombin) and factor Xa.

<span class="mw-page-title-main">Factor XII</span> Mammalian protein involved in blood clotting

Coagulation factor XII, also known as Hageman factor, is a plasma protein. It is the zymogen form of factor XIIa, an enzyme of the serine protease class. In humans, factor XII is encoded by the F12 gene.

<span class="mw-page-title-main">Urokinase</span> Human protein

Urokinase, also known as urokinase-type plasminogen activator (uPA), is a serine protease present in humans and other animals. The human urokinase protein was discovered, but not named, by McFarlane and Pilling in 1947. Urokinase was originally isolated from human urine, and it is also present in the blood and in the extracellular matrix of many tissues. The primary physiological substrate of this enzyme is plasminogen, which is an inactive form (zymogen) of the serine protease plasmin. Activation of plasmin triggers a proteolytic cascade that, depending on the physiological environment, participates in thrombolysis or extracellular matrix degradation. This cascade had been involved in vascular diseases and cancer progression.

<span class="mw-page-title-main">Alpha 2-antiplasmin</span> Protein-coding gene in the species Homo sapiens

Alpha 2-antiplasmin is a serine protease inhibitor (serpin) responsible for inactivating plasmin. Plasmin is an important enzyme that participates in fibrinolysis and degradation of various other proteins. This protein is encoded by the SERPINF2 gene.

The prothrombinase enzyme complex consists of factor Xa (a serine protease) and factor Va (a protein cofactor). The complex assembles on negatively charged phospholipid membranes in the presence of calcium ions. The prothrombinase complex catalyzes the conversion of prothrombin (factor II), an inactive zymogen, to thrombin (factor IIa), an active serine protease. The activation of thrombin is a critical reaction in the coagulation cascade, which functions to regulate hemostasis in the body. To produce thrombin, the prothrombinase complex cleaves two peptide bonds in prothrombin, one after Arg271 and the other after Arg320. Although it has been shown that factor Xa can activate prothrombin when unassociated with the prothrombinase complex, the rate of thrombin formation is severely decreased under such circumstances. The prothrombinase complex can catalyze the activation of prothrombin at a rate 3 x 105-fold faster than can factor Xa alone. Thus, the prothrombinase complex is required for the efficient production of activated thrombin and also for adequate hemostasis.

<span class="mw-page-title-main">Protein C inhibitor</span> Human protein

Protein C inhibitor is a serine protease inhibitor (serpin) that limits the activity of protein C.

The dysfibrinogenemias consist of three types of fibrinogen disorders in which a critical blood clotting factor, fibrinogen, circulates at normal levels but is dysfunctional. Congenital dysfibrinogenemia is an inherited disorder in which one of the parental genes produces an abnormal fibrinogen. This fibrinogen interferes with normal blood clotting and/or lysis of blood clots. The condition therefore may cause pathological bleeding and/or thrombosis. Acquired dysfibrinogenemia is a non-hereditary disorder in which fibrinogen is dysfunctional due to the presence of liver disease, autoimmune disease, a plasma cell dyscrasias, or certain cancers. It is associated primarily with pathological bleeding. Hereditary fibrinogen Aα-Chain amyloidosis is a sub-category of congenital dysfibrinogenemia in which the dysfunctional fibrinogen does not cause bleeding or thrombosis but rather gradually accumulates in, and disrupts the function of, the kidney.

<span class="mw-page-title-main">Fibrinogen gamma chain</span> Protein-coding gene in the species Homo sapiens

Fibrinogen gamma chain, also known as fibrinogen gamma gene (FGG), is a human gene found on chromosome 3.

<span class="mw-page-title-main">Coagulation factor XIII, A1 polypeptide</span> Protein found in humans

Coagulation factor XIII A chain is a protein that in humans is encoded by the F13A1 gene.

<span class="mw-page-title-main">F13B</span> Mammalian protein found in Homo sapiens

Coagulation factor XIII B chain is a protein that in humans is encoded by the F13B gene.

<span class="mw-page-title-main">GP1BA</span> Protein-coding gene in the species Homo sapiens

Platelet glycoprotein Ib alpha chain also known as glycoprotein Ib (platelet), alpha polypeptide or CD42b, is a protein that in humans is encoded by the GP1BA gene.

<span class="mw-page-title-main">Fibrinogen beta chain</span> Protein-coding gene in the species Homo sapiens

Fibrinogen beta chain, also known as FGB, is a gene found in humans and most other vertebrates with a similar system of blood coagulation.

<span class="mw-page-title-main">Carboxypeptidase B2</span>

Carboxypeptidase B2 (CPB2), also known as carboxypeptidase U (CPU), plasma carboxypeptidase B (pCPB) or thrombin-activatable fibrinolysis inhibitor (TAFI), is an enzyme that, in humans, is encoded by the gene CPB2.

<span class="mw-page-title-main">Fibrin glue</span>

Fibrin glue is a surgical formulation used to create a fibrin clot for hemostasis, cartilage repair surgeries or wound healing. It contains separately packaged human fibrinogen and human thrombin.

Venombin A is an enzyme. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Fibrinopeptide</span> Chemical compound

The fibrinopeptides, fibrinopeptide A (FpA) and fibrinopeptide B (FpB), are peptides which are located in the central region of the fibrous glycoprotein fibrinogen and are cleaved by the enzyme thrombin to convert fibrinogen into covalently-linked fibrin monomers. The N-terminal FpA is cleaved from the Aα chains of fibrinogen and FpB from the Bβ chains of fibrinogen, with FpA released before FpB. Subsequent to their formation, fibrin monomers are converted to cross-linked fibrin polymers by the action of thrombin-activated factor XIII, and these fibrin polymers form the backbone of a thrombus. Hence, the fibrinopeptides are sensitive markers of fibrinogenesis, thrombin activity, and coagulation.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000171560 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028001 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: FGA fibrinogen alpha chain".
  6. Tsurupa G, Medved L (Jan 2001). "Identification and characterization of novel tPA- and plasminogen-binding sites within fibrin(ogen) alpha C-domains". Biochemistry. 40 (3): 801–808. doi:10.1021/bi001789t. PMID   11170397.
  7. Ichinose A, Takio K, Fujikawa K (Jul 1986). "Localization of the binding site of tissue-type plasminogen activator to fibrin". The Journal of Clinical Investigation. 78 (1): 163–169. doi:10.1172/JCI112546. PMC   329545 . PMID   3088041.

Further reading