Protein Z

Last updated
PROZ
Protein Z.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PROZ , PZ, Protein Z, protein Z, vitamin K dependent plasma glycoprotein
External IDs OMIM: 176895 MGI: 1860488 HomoloGene: 2890 GeneCards: PROZ
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001256134
NM_003891

NM_025834
NM_001357219
NM_001357220

RefSeq (protein)

NP_001243063
NP_003882

NP_080110
NP_001344148
NP_001344149

Location (UCSC) Chr 13: 113.16 – 113.17 Mb Chr 8: 13.11 – 13.13 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Protein Z (PZ or PROZ), vitamin K-dependent protein Z, is a protein encoded in the human by the PROZ gene. [5] [6]

Contents

Protein Z is a member of the coagulation cascade, the group of blood proteins that leads to the formation of blood clots. It is a glycoprotein. Protein Z functions to inhibit blood coagulation by binding to an inhibitor. [7] It is a GLA domain protein and thus Vitamin K-dependent, and its functionality is therefore impaired in warfarin therapy.

Physiology

Although it is not enzymatically active, it is structurally related to several serine proteases of the coagulation cascade: Factors VII, IX, X and Protein C. The carboxyglutamate residues (which require Vitamin K) bind Protein Z to phospholipid surfaces.

The main role of Protein Z appears to be the degradation of Factor Xa. This is done by Protein Z-related protease inhibitor (ZPI), but the reaction is accelerated 1000-fold by the presence of Protein Z. Oddly, ZPI also degrades Factor XI, but this reaction does not require the presence of Protein Z. ZPI activated by Protein Z does not appear to happen because of its conformation, but proximity to each other. When Protein Z in bound to ZPI, it will bind to the same phospholipid surface as Factor Xa. This is what promotes the inhibition of Factor Xa. [8]

In some studies, deficiency states have been associated with a propensity to thrombosis. Others, however, link it to bleeding tendency; there is no clear explanation for this, as it acts physiologically as an inhibitor, and deficiency would logically have led to a predisposition for thrombosis.

Genetics

It is 62 kDa large and 396 amino acids long. The PROZ gene is located on chromosome 13 (13q34).

It has four domains: a GLA-rich region, two EGF-like domains and a trypsin-like domain. It lacks the serine residue that would make it catalytically active as a serine protease.

History

Protein Z was first isolated in cattle blood by Christopher Prowse and Peter Esnouf in 1977, [9] and Broze & Miletich determined it in human plasma in 1984. [10] Protein Z found in humans was given the same name as the one found in cattle for a few reasons. When looking at these isolated proteins it was found that they both have similar molecular weight, a similar composition of amino acids, and a similar Amino Terminal sequences. [11] These similarities in molecular composition of the protein found in cattle and humans was great enough that it can be concluded they were the same protein. When Protein Z was first discovered, it was theorized to be a form of Factor X instead of its own individual protein. Research had to be done to isolate this protein to find out if it was a form of Factor X or not. To test this, Vitamin K dependents were removed from the sample by adsorption to barium citrate, then an ion exchange chromatography was performed. This process showed that there was no Factor X in the isolated protein. The purified Protein Z in this experiment was distinct from Factor X, proving it was a separate protein. [11]

Structure

Structural analysis of Protein Z will allow better understanding of its function. The Ramachandran plot for Protein Z indicates it will form alpha helices. The final structure, all alpha domain, was determined by x-ray diffraction. It consists of chain A and B, which are both helix-loop-helix motifs. PDB: 1LP1 [12] The secondary structures of this protein are color coded in the image in the top left; pink represents the strands, yellow represents alpha helices and white is the coils.

Health

There are many reasons that Protein Z is important in health. In pregnancy it is vital that the protein is functioning correctly. It has been found that if it isn't functioning correctly, it can lead to fetal death or hypersensitive disorders in pregnancy. This happens because when the levels of this protein drop too low, it can lead to fetal growth restrictions. [13] Another possible effect is having a high sensitivity to this protein which could correlate with diabetes. [14] In women diagnosed with ovarian cancers, it was found the protein was inhibiting Factor Xa which happens because there is a lower regulation of this protein in cancer cells. [15]

Related Research Articles

<span class="mw-page-title-main">Protease</span> Enzyme that cleaves other proteins into smaller peptides

A protease is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in numerous biological pathways, including digestion of ingested proteins, protein catabolism, and cell signaling.

<span class="mw-page-title-main">Coagulation</span> Process of formation of blood clots

Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The process of coagulation involves activation, adhesion and aggregation of platelets, as well as deposition and maturation of fibrin.

<span class="mw-page-title-main">Thrombin</span> Enzyme involved in blood coagulation in humans

Prothrombin is encoded in the human by the F2 gene. It is proteolytically cleaved during the clotting process by the prothrombinase enzyme complex to form thrombin.

<span class="mw-page-title-main">Antithrombin</span> Mammalian protein found in Homo sapiens

Antithrombin (AT) is a small glycoprotein that inactivates several enzymes of the coagulation system. It is a 464-amino-acid protein produced by the liver. It contains three disulfide bonds and a total of four possible glycosylation sites. α-Antithrombin is the dominant form of antithrombin found in blood plasma and has an oligosaccharide occupying each of its four glycosylation sites. A single glycosylation site remains consistently un-occupied in the minor form of antithrombin, β-antithrombin. Its activity is increased manyfold by the anticoagulant drug heparin, which enhances the binding of antithrombin to factor IIa (thrombin) and factor Xa.

alpha-2-Macroglobulin Large plasma protein found in the blood

α2-Macroglobulin (α2M) or alpha-2-macroglobulin is a large plasma protein found in the blood. It is mainly produced by the liver, and also locally synthesized by macrophages, fibroblasts, and adrenocortical cells. In humans it is encoded by the A2M gene.

<span class="mw-page-title-main">Carboxyglutamic acid</span> Chemical compound

Carboxyglutamic acid, is an uncommon amino acid introduced into proteins by a post-translational carboxylation of glutamic acid residues. This modification is found, for example, in clotting factors and other proteins of the coagulation cascade. This modification introduces an affinity for calcium ions. In the blood coagulation cascade, vitamin K is required to introduce γ-carboxylation of clotting factors II, VII, IX, X and protein Z.

An Error has occurred retrieving Wikidata item for infobox Coagulation factor VII is one of the clotting factors in the coagulation cascade, and in humans is coded for by the gene F7. It is an enzyme of the serine protease class. Once bound to tissue factor released from damaged tissues, it is converted to factor VIIa, which in turn activates factor IX and factor X.

<span class="mw-page-title-main">Protein S</span>

Protein S is a vitamin K-dependent plasma glycoprotein synthesized in the liver. In the circulation, Protein S exists in two forms: a free form and a complex form bound to complement protein C4b-binding protein (C4BP). In humans, protein S is encoded by the PROS1 gene. Protein S plays a role in coagulation.

<span class="mw-page-title-main">Protein C</span> Mammalian protein found in Homo sapiens

Protein C, also known as autoprothrombin IIA and blood coagulation factor XIV, is a zymogen, that is, an inactive enzyme. The activated form plays an important role in regulating anticoagulation, inflammation, and cell death and maintaining the permeability of blood vessel walls in humans and other animals. Activated protein C (APC) performs these operations primarily by proteolytically inactivating proteins Factor Va and Factor VIIIa. APC is classified as a serine protease since it contains a residue of serine in its active site. In humans, protein C is encoded by the PROC gene, which is found on chromosome 2.

<span class="mw-page-title-main">Factor X</span> Mammalian protein found in Homo sapiens

Coagulation factor X, or Stuart factor, is an enzyme of the coagulation cascade encoded in the human by the F10 gene. It is a serine endopeptidase. Factor X is synthesized in the liver and requires vitamin K for its synthesis.

<span class="mw-page-title-main">Factor XI</span> Mammalian protein found in Homo sapiens

Factor XI or plasma thromboplastin antecedent is the zymogen form of factor XIa, one of the enzymes of the coagulation cascade. Like many other coagulation factors, it is a serine protease. In humans, Factor XI is encoded by the F11 gene.

<span class="mw-page-title-main">Protein Z-related protease inhibitor</span>

Protein Z-dependent protease inhibitor (ZPI) is a protein circulating in the blood which inhibits factors Xa and XIa of the coagulation cascade. It is a member of the class of the serine protease inhibitors (serpins). Its name implies that it requires protein Z, another circulating protein, to function properly, but this only applies to its inhibition of factor X.

<span class="mw-page-title-main">Tissue factor</span> Protein involved in blood coagulation

Tissue factor, also called platelet tissue factor, coagulation factor III, or CD142, is a protein encoded in the human by the F3 gene, present in subendothelial tissue and leukocytes. Its role in the clotting process is the initiation of thrombin formation from the zymogen prothrombin. Thromboplastin defines the cascade that leads to the activation of factor X—the tissue factor pathway. In doing so, it has replaced the previously named extrinsic pathway in order to eliminate ambiguity.

The prothrombinase enzyme complex consists of factor Xa (a serine protease) and factor Va (a protein cofactor). The complex assembles on negatively charged phospholipid membranes in the presence of calcium ions. The prothrombinase complex catalyzes the conversion of prothrombin (factor II), an inactive zymogen, to thrombin (factor IIa), an active serine protease. The activation of thrombin is a critical reaction in the coagulation cascade, which functions to regulate hemostasis in the body. To produce thrombin, the prothrombinase complex cleaves two peptide bonds in prothrombin, one after Arg271 and the other after Arg320. Although it has been shown that factor Xa can activate prothrombin when unassociated with the prothrombinase complex, the rate of thrombin formation is severely decreased under such circumstances. The prothrombinase complex can catalyze the activation of prothrombin at a rate 3 x 105-fold faster than can factor Xa alone. Thus, the prothrombinase complex is required for the efficient production of activated thrombin and also for adequate hemostasis.

<span class="mw-page-title-main">Tissue factor pathway inhibitor</span> Single-chain polypeptide capable of inhibiting blood clotting Factor Xa

Tissue factor pathway inhibitor is a single-chain polypeptide which can reversibly inhibit factor Xa (Xa). While Xa is inhibited, the Xa-TFPI complex can subsequently also inhibit the FVIIa-tissue factor complex. TFPI contributes significantly to the inhibition of Xa in vivo, despite being present at concentrations of only 2.5 nM.

<span class="mw-page-title-main">Plasma kallikrein</span>

Plasma kallikrein is an enzyme that catalyses the following chemical reaction:

<span class="mw-page-title-main">Protein C inhibitor</span> Human protein

Protein C inhibitor is a serine protease inhibitor (serpin) that limits the activity of protein C.

<span class="mw-page-title-main">Gla domain</span>

Vitamin K-dependent carboxylation/gamma-carboxyglutamic (GLA) domain is a protein domain that contains post-translational modifications of many glutamate residues by vitamin K-dependent carboxylation to form γ-carboxyglutamate (Gla). Proteins with this domain are known informally as Gla proteins. The Gla residues are responsible for the high-affinity binding of calcium ions.

<span class="mw-page-title-main">Serine protease HTRA2, mitochondrial</span> Enzyme found in humans

Serine protease HTRA2, mitochondrial is an enzyme that in humans is encoded by the HTRA2 gene. This protein is involved in caspase-dependent apoptosis and in Parkinson's disease.

<span class="mw-page-title-main">HGFAC</span> Protein-coding gene in humans

Hepatocyte growth factor activator is a protein that in humans is encoded by the HGFAC gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000126231 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031445 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Ichinose A, Takeya H, Espling E, Iwanaga S, Kisiel W, Davie EW (November 1990). "Amino acid sequence of human protein Z, a vitamin K-dependent plasma glycoprotein". Biochemical and Biophysical Research Communications. 172 (3): 1139–1144. doi:10.1016/0006-291X(90)91566-B. PMID   2244898.
  6. Sejima H, Hayashi T, Deyashiki Y, Nishioka J, Suzuki K (September 1990). "Primary structure of vitamin K-dependent human protein Z". Biochemical and Biophysical Research Communications. 171 (2): 661–668. doi:10.1016/0006-291X(90)91197-Z. PMID   2403355.
  7. Wei Z, Yan Y, Carrell RW, Zhou A (October 2009). "Crystal structure of protein Z-dependent inhibitor complex shows how protein Z functions as a cofactor in the membrane inhibition of factor X". Blood. 114 (17): 3662–3667. doi:10.1182/blood-2009-04-210021. PMC   2766681 . PMID   19528533.
  8. Wei Z, Yan Y, Carrell RW, Zhou A (October 2009). "Crystal structure of protein Z-dependent inhibitor complex shows how protein Z functions as a cofactor in the membrane inhibition of factor X". Blood. 114 (17): 3662–3667. doi:10.1182/blood-2009-04-210021. PMC   2766681 . PMID   19528533.
  9. Prowse CV, Esnouf MP (1977). "The isolation of a new warfarin-sensitive protein from bovine plasma". Biochemical Society Transactions. 5 (1): 255–256. doi:10.1042/bst0050255. PMID   892175.
  10. Broze GJ, Miletich JP (April 1984). "Human Protein Z". The Journal of Clinical Investigation. 73 (4): 933–938. doi:10.1172/JCI111317. PMC   425104 . PMID   6707212.
  11. 1 2 Broze GJ, Miletich JP (April 1984). "Human Protein Z". The Journal of Clinical Investigation. 73 (4): 933–938. doi:10.1172/JCI111317. PMC   425104 . PMID   6707212.
  12. Högbom M, Eklund M, Nygren PA, Nordlund P (March 2003). "Structural basis for recognition by an in vitro evolved affibody". Proceedings of the National Academy of Sciences of the United States of America. 100 (6): 3191–3196. Bibcode:2003PNAS..100.3191H. doi: 10.1073/pnas.0436100100 . PMC   404300 . PMID   12604795.
  13. Pan C, Huang Y, Guo X, Gu C, Guo J, Luo X (January 2022). "Expression and diagnostic value of serum protein Z and protein Z-dependent protease inhibitor in fetal growth restriction". Ginekologia Polska. 93 (12): 987–992. doi: 10.5603/GP.a2021.0205 . PMID   35072242. S2CID   245765065.
  14. Bae YU, You JH, Cho NH, Kim LE, Shim HM, Park JH, Cho HC (June 2021). "Association of Protein Z with Prediabetes and Type 2 Diabetes". Endocrinology and Metabolism. 36 (3): 637–646. doi:10.3803/EnM.2021.962. PMC   8258334 . PMID   34074095.
  15. Russell MR, Walker MJ, Williamson AJ, Gentry-Maharaj A, Ryan A, Kalsi J, et al. (June 2016). "Protein Z: A putative novel biomarker for early detection of ovarian cancer". International Journal of Cancer. 138 (12): 2984–2992. doi:10.1002/ijc.30020. PMC   4840324 . PMID   26815306.