Platelet membrane glycoprotein

Last updated

Platelet membrane glycoproteins are surface glycoproteins found on platelets (thrombocytes) which play a key role in hemostasis. When the blood vessel wall is damaged, platelet membrane glycoproteins interact with the extracellular matrix.

Contents

Receptors involved in platelet adhesion to collagen

Membrane glycoproteins GPIa/IIa, GPVI and probably GPIV as well, function as collagen receptors, engaged in platelet adhesion to collagen. The leading role in the elimination of high-stress injury is taken by the glycoprotein Ib-IX-V complex.

Interactions of the platelet surface glycoproteins

The binding of von Willebrand factor (vWF) results in conformational changes within the GPIb-V-IX complex. In consequence, this complex activates GPIIb / IIIa membrane glycoproteins, allowing them to bind fibrinogen. Fibrinogen molecules then interconnect the platelets, serving as the basis for platelet aggregation. In the absence of fibrinogen, the platelets are joined by vWF due to its ability to bind the activated GPIIb / IIIa complex.

Membrane glycoproteins

Glycoprotein Ib-IX-V complex (GPIb-IX-V)

This transmembrane glycoprotein complex is composed of four subunits: GPIbα, GPIbβ, GPV and GPIX. Each of them has a variable number of leucine-rich repeats. GPIbα and GPIbβ are linked by disulfide bridges, while the GPV and GPIX associate non-covalently with the complex. The GPIbα subunit bears the binding site for von Willebrand factor (vWF), α-thrombin, leukocyte integrin αMβ2 and P-selectin. The binding between GPIbα and vWF mediates the capture of platelets to the injured vascular wall. The deficiency in glycoprotein Ib-IX-V complex synthesis leads to Bernard–Soulier syndrome. [1]

Glycoprotein VI (GPVI)

Glycoprotein VI is one of the immunoglobulin superfamily type I transmembrane glycoproteins. It is an important collagen receptor involved in collagen-induced platelet activation and adhesion. It plays a key role in their procoagulant activity and subsequent thrombin and fibrin formation. Its procoagulant function may contribute to arterial or venous thrombosis. The FCR pathway of GPVI activation involves γ chain (GPVI transmembrane domain associates with γ chain FCR), Src kinase FYN / LYN, and LAT adaptor protein, all participating in phospholipase C activation. [2]

Glycoprotein Ia / IIa complex (GPIa / IIa = integrin α2 β1)

This is a receptor for collagen type I and IV. It consists of two subunits (α2 and β1). The α2 subunit includes a domain homologous to von Willebrand factor domain binding to collagen. The β1 subunit has four cysteine-rich regions and a structure similar to other β-integrins. The interaction with collagen leads to stabilization of the platelets. The surface expression of this complex shows high variability, particularly in relation to the polymorphism of GPIa subunit gene. Different opinions exist on the importance of C - T point mutation at position 807, which is believed to be associated with the risk of myocardial infarction or ischemic stroke. [3]

Glycoprotein IIb / IIIa complex (GPIIb / IIIa = integrin αIIb β3)

This complex interacts with fibrinogen and thus plays an important role in platelet aggregation and adhesion to endothelial surfaces. Activation of this complex initiates the platelet aggregation and the formation of primary platelet plug, a fibrin clot. The IIb / IIIa complex is a major platelet membrane component. There are as many as 50 000 copies. The αIIb (GPIIb) is composed of two subunits linked by disulfide bridges. The β3 (GPIIIa) forms a single polypeptide chain. These subunits form Ca2+ - dependent complex on the surface of platelet membrane in a 1:1 ratio.

Fibrinogen sites recognized by glycoprotein IIb / IIIa complex:

This complex also binds vWF, fibronectin and vitronectin. In the resting state the contact between the two protein subunits (necessary for the complex activation) is prevented by aggregin, which disables their contact necessary for the complex activation. The complex can be activated by ADP. When bound to ADP, conformational changes occur within the aggregin molecule and consequently, it dissociates from the two subunits. Furthermore, the complex can be activated by thrombin. Thrombin binding to its receptor activates protein kinase C and increases the level of inositol triphosphate. Consequently, there is a release of calcium ions that activate calpain. Calpain cleaves aggregin, and thus allows for joining of the two subunits. Deficiency in the IIb / IIIa complex is described as Glanzmann's thrombasthenia. Patients completely lack the ability to aggregate platelets. [4]

GPV / IIIa (GPV / IIa = integrin α5 β1)

This is a heterodimer. Its α5 subunit is 36% identical to the GPIIb subunit. This complex is located mainly on endothelial cells but also on smooth muscle cells, macrophages and platelets. Its main function is in the adhesion of cells to the extracellular matrix components.

Related Research Articles

Integrin

Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. The presence of integrins allows rapid and flexible responses to events at the cell surface.

Platelet Component of blood aiding in coagulation

Platelets, also called thrombocytes, are a component of blood whose function is to react to bleeding from blood vessel injury by clumping, thereby initiating a blood clot. Platelets have no cell nucleus; they are fragments of cytoplasm that are derived from the megakaryocytes of the bone marrow, which then enter the circulation. Circulating inactivated platelets are biconvex discoid (lens-shaped) structures, 2–3 µm in greatest diameter. Activated platelets have cell membrane projections covering their surface. Platelets are found only in mammals, whereas in other vertebrates, thrombocytes circulate as intact mononuclear cells.

Coagulation Process by which blood changes from a liquid to a gel, forming a blood clot

Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It potentially results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The mechanism of coagulation involves activation, adhesion and aggregation of platelets, as well as deposition and maturation of fibrin.

Von Willebrand factor

von Willebrand factor (VWF) is a blood glycoprotein involved in hemostasis. It is deficient and/or defective in von Willebrand disease and is involved in many other diseases, including thrombotic thrombocytopenic purpura, Heyde's syndrome, and possibly hemolytic–uremic syndrome. Increased plasma levels in many cardiovascular, neoplastic, and connective tissue diseases are presumed to arise from adverse changes to the endothelium, and may predict an increased risk of thrombosis.

Glanzmanns thrombasthenia Medical condition

Glanzmann's thrombasthenia is an abnormality of the platelets. It is an extremely rare coagulopathy, in which the platelets contain defective or low levels of glycoprotein IIb/IIIa (GpIIb/IIIa), which is a receptor for fibrinogen. As a result, no fibrinogen bridging of platelets to other platelets can occur, and the bleeding time is significantly prolonged.

Cell adhesion molecules (CAMs) are a subset of cell adhesion proteins located on the cell surface involved in binding with other cells or with the extracellular matrix (ECM) in the process called cell adhesion. In essence, cell adhesion molecules help cells stick to each other and to their surroundings. Cell adhesion is a crucial component in maintaining tissue structure and function. In fully developed animals, these molecules play an integral role in creating force and movement and consequently ensure that organs are able to execute their functions. In addition to serving as "molecular glue", cell adhesion is important in affecting cellular mechanisms of growth, contact inhibition, and apoptosis. Oftentimes aberrant expression of CAMs will result in pathologies ranging from frostbite to cancer.

Disintegrin

Disintegrins are a family of small proteins from viper venoms that function as potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion.

In medicine, glycoprotein IIb/IIIa is an integrin complex found on platelets. It is a receptor for fibrinogen and von Willebrand factor and aids platelet activation. The complex is formed via calcium-dependent association of gpIIb and gpIIIa, a required step in normal platelet aggregation and endothelial adherence. Platelet activation by ADP leads to the aforementioned conformational change in platelet gpIIb/IIIa receptors that induces binding to fibrinogen. The gpIIb/IIIa receptor is a target of several drugs including abciximab, eptifibatide, and tirofiban.

Convulxin

Convulxin is a snake venom toxin found in a tropical rattlesnake known as Crotalus durissus terrificus. It belongs to the family of hemotoxins, which destroy red blood cells or, as is the case with convulxin, induce blood coagulation.

GPVI

Glycoprotein VI (platelet), also known as GPVI, is a glycoprotein receptor for collagen which is expressed in platelets. In humans, glycoprotein VI is encoded by the GPVI gene. GPVI was first cloned in 2000 by several groups including that of Martine Jandrot-Perrus from INSERM.

Integrin alpha 2

Integrin alpha-2, or CD49b, is a protein which in humans is encoded by the CD49b gene.

Integrin beta 3

Integrin beta-3 (β3) or CD61 is a protein that in humans is encoded by the ITGB3 gene. CD61 is a cluster of differentiation found on thrombocytes.

Integrin alpha 2b

Integrin alpha-IIb is a protein that in humans is encoded by the ITGA2B gene. ITGA2B, also known as CD41, encodes integrin alpha chain 2b. Integrins are heterodimeric integral membrane proteins composed of an alpha chain and a beta chain. Alpha chain 2b undergoes post-translational cleavage to yield disulfide-linked light and heavy chains that join with beta 3 to form a fibrinogen receptor expressed in platelets that plays a crucial role in coagulation. Mutations that interfere with this role result in thrombasthenia. In addition to adhesion, integrins are known to participate in cell-surface mediated signalling.

GP1BA

Platelet glycoprotein Ib alpha chain also known as glycoprotein Ib (platelet), alpha polypeptide or CD42b, is a protein that in humans is encoded by the GP1BA gene.

GP5 (gene)

Glycoprotein V (platelet) (GP5) also known as CD42d, is a human gene.

Integrin alpha 9

Integrin alpha-9 is a protein that in humans is encoded by the ITGA9 gene. Cytogenetic location: 3p22.2

Collagen receptors are membrane proteins that bind the extracellular matrix protein collagen, the most abundant protein in mammals. They control mainly cell proliferation, migration and adhesion, coagulation cascade activation and they affect ECM structure by regulation of MMP.

Arginylglycylaspartic acid Chemical compound

Arginylglycylaspartic acid (RGD) is the most common peptide motif responsible for cell adhesion to the extracellular matrix (ECM), found in species ranging from Drosophila to humans. Cell adhesion proteins called integrins recognize and bind to this sequence, which is found within many matrix proteins, including fibronectin, fibrinogen, vitronectin, osteopontin, and several other adhesive extracellular matrix proteins.

Multiple electrode aggregometry

Multiplate multiple electrode aggregometry (MEA) is a test of platelet function in whole blood. The test can be used to diagnose platelet disorders, monitor antiplatelet therapy, and is also investigated as a potential predictor of transfusion requirements and bleeding risk in cardiac surgery.

The platelet plug, also known as the hemostatic plug or platelet thrombus, is an aggregation of platelets formed during the earlier stage of hemostasis in response to blood vessel wall injury. After platelets are recruited and begin to accumulate around the breakage, their “sticky” nature allows them to adhere to each other. This forms a platelet plug, which prevents more blood from leaving the body as well as any outside contaminants from getting in. The plug provides a temporary blockage of the break in the vasculature. As such, platelet plug formation occurs after vasoconstriction of the blood vessels but before the creation of the fibrin mesh clot, which is the more permanent solution to the injury. The result of the platelet plug formation is the coagulation of blood. It can also be referred to as primary hemostasis.

References

  1. LEPAGE, A., M. LEBOEUF, J.P. CAZENAVE, C. SALLE, F. LANZA a G. UZAN. The αIIbβ3 integrin and GPIb-V-IX complex identify distinct stages in the maturation of CD34+cord blood cells to megakaryocytes. Blood. [cit. 2012-06-12]. ISSN   1528-0020. http://bloodjournal.hematologylibrary.org/content/96/13/4169.full.pdf
  2. Jandrot-Perrus M, Busfield S, Lagrue AH, Xiong X, Debili N, Chickering T, Le Couedic JP, Goodearl A, Dussault B, Fraser C, Vainchenker W, Villeval JL (September 2000). "Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily". Blood 96 (5): 1798–807. PMID   10961879.
  3. ESTAVILLO, RITCHIE, DIACOVO a CRUZ. Functional Analysis of a Recombinant Glycoprotein Ia/IIa (Integrin α2β1) I Domain That Inhibits Platelet Adhesion to Collagen and Endothelial Matrix under Flow Conditions. The Journal of Biological Chemistry,. s. -. DOI: 10.1074/jbc.274.50.35921. Available online: http://www.jbc.org/content/274/50/35921.long
  4. SHATTIL, S. J., J. A. HOXIE, M. CUNNINGHAM a BRASS. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. The Journal of Biological Chemistry. September 15, 1985. ISSN   0021-9258. Available online: http://www.jbc.org/content/260/20/11107.short