Traffic collision reconstruction

Last updated
Roadside investigative training exercise Service members receive roadside investigative training 140714-M-XE845-001.jpg
Roadside investigative training exercise

Traffic collision reconstruction is the process of investigating, analyzing, and drawing conclusions about the causes and events during a vehicle collision. Reconstructionists conduct collision analysis and reconstruction to identify the cause of a collision and contributing factors including the role of the driver(s), vehicle(s), roadway and general environment. Physics and engineering principles are the basis for these analyses and may involve the use of software for calculations and simulations. Collision reconstruction is sometimes used as the basis of expert witness testimony at trials. Collision reconstructions are performed in cases involving fatalities or personal injury. Results from collision reconstructions are also sometimes used for making roads and highways safer, as well as improving safety aspects of motor vehicle designs. Reconstructions are typically conducted by forensic engineers, specialized units in law enforcement agencies, or private consultants.

Contents

History

Crash analysis dates back to shortly after the first car crashed. The field got more analytical in the 1930s and in 1940 there was the first judicial opinion accepting the analysis of speed through measuring skid length and using that information with the principle of Conservation of Energy. NY State City Magistrate Horn, 20 N.Y.S. (92nd) 149 (1940) 174 N.Y. Misc 235. [1]

The National Highway Traffic Safety Administration funded the first national guidelines for the standardization training in the field of traffic collision reconstruction in 1985. This led to the establishment of "Accreditation Commission for Traffic Accident Reconstruction" (ACTAR), an industry accreditation group. [2]

The field of motorcycle collision research was pioneered by Hugh H. Hurt Jr. His reconstructions of motorcycle collisions helped to explain that proper helmets reduced head injuries, most motorcyclists needed more driver training to control skids, and a large percentage of motorcycle collisions involved left-turning automobiles turning in front of the oncoming motorcycle. [3]

Skid marks on an asphalt road. Bremsspur.jpg
Skid marks on an asphalt road.

Investigation

Scene inspections and data recovery involves visiting the scene of the collision and investigating all of the vehicles involved in the collision. Investigations involve collecting evidence such as scene photographs, video of the collision, measurements of the scene, eyewitness testimony, and legal depositions. Additional factors include steering angles, braking, use of lights, turn signals, speed, acceleration, engine rpm, cruise control, and anti-lock brakes. Witnesses are interviewed during collision reconstruction, and physical evidence such as tire marks are examined. The length of a skid mark can often allow calculation of the original speed of a vehicle for example. Vehicle speeds are frequently underestimated by a driver, so an independent estimate of speed is often essential in collisions. Inspection of the road surface is also vital, especially when traction has been lost due to black ice, diesel fuel contamination, or obstacles such as road debris. Data from an event data recorder also provides valuable information such as the speed of the vehicle a few seconds before the collision. [4]

As part of the investigation of a vehicle collision, an investigator typically documents evidence at the collision site and the damage to the vehicles. The use of 3-dimensional laser scanning has become a common method for documentation. The product of scanning is a 3D point cloud that can be used to take measurements and create computer models used in the analysis of the collision. The 3D data can be incorporated into many of the computer simulation programs used in collision reconstruction. The 3D point clouds and models can also be used for creating visuals to illustrate the analysis and to show views of witnesses and the involved drivers.

Technology

Many new vehicles are equipped with onboard "Crash Data Recorders or Event Data Recorders" (CDR or EDR). The Bosch CDR-Tool is a commercially available tool allowing the investigator to image (download) crash data directly from a supported vehicle. The CDR-Tool software generates a report of recorded data parameters leading up to the crash, as well as recording the crash pulse (accelerations and or speed change, also known as delta-V). Some of the recorded pre-crash parameters include vehicle speed, brake status (ON/OFF), throttle position (%), ignition cycles, seat belt status, wheel speeds, steering wheel position (degrees), ABS operation, and others. [5]

Tesla, [6] Hyundai, and Kia [7] as well as most heavy commercial vehicles are equipped with some sort of event recording, but are not supported by the Bosch CDR-Tool equipment. To access information in these other vehicles, a diagnostic retrieval tool unique to each manufacturer is required.

Analysis

Vehicular collision reconstruction analysis includes processing data collecting, evaluating possible hypotheses, creating models, recreating collisions, testing, and utilizing software simulations. Like many other technical activities, collision reconstruction has been revolutionized by the use of powerful, inexpensive computers and specialty software. Various types of collision reconstruction software are used to recreate crash and crime scenes and to perform other useful tasks involved in reconstructing collisions. Collision reconstruction software is regularly used by law enforcement personnel and consultants to analyze a collision and to demonstrate what occurred in a collision. Examples of types of software used by collision reconstructionists are CAD (computer aided drawing) programs, vehicle specification databases, momentum and energy analysis programs, collision simulators, and photogrammetry software.

Presentation

After the analysis is completed, forensic engineers compile report findings, diagrams, and animations to form their expert testimony and conclusions relating to the collision. Forensic animation typically depicts all or part of a collision sequence in a video format so that non-technical parties, such as juries, can easily understand the expert's opinions regarding that event. To be physically realistic, an animation needs to be created by someone with a knowledge of physics, dynamics and engineering. When animations are used in a courtroom setting, they should be carefully scrutinized. Animation software can be easily misused, because motions which are not physically possible can be displayed. A reliable animation must be based on physical evidence and calculations which embody the laws of physics, and the animation should only be used to demonstrate in a visual fashion the underlying calculations made by the expert analyzing the case. [8]

Motorcycle collision reconstruction

Motorcycle collision reconstruction is similar to other collision reconstruction techniques and relies on the same basic principles of conservation of energy and momentum as automobile collision reconstruction plus adds the specifics of motorcycle dynamics and rider control. Proper reconstruction of a motorcycle collision requires detailed knowledge of motorcycle dynamics plus knowledge of how motorcycles react to rider input.

Motorcycle collision reconstruction follows reverse a chronological order of events, working from the point of rest of the motorcycle and/or rider backwards to a point in time before to the start of the collision sequence to when possible actions could have prevented the crash.

Motorcycle collision reconstruction relies on knowledge of the five phases of a motorcycle collision.

Perception–reaction: This is the phase where the rider perceives a collision hazard and decides on a response. Perception/reaction time is estimated at 1.1 to 1.5 seconds. [9]

Avoidance – braking/steering: In this next phase, the rider typically engages in some type of avoidance using steering or braking using the front brake, rear brake or a combination. Physical evidence at the scene combined with statements from witnesses can give clues as to what type of avoidance occurred.

Pre-impact sliding: During braking, riders may overuse the motorcycle brakes, resulting in locking the front and/or rear wheel. If the front wheel locks, the rider will almost certainly lose control and crash. If the rider loses control and crashes while braking, the motorcycle and rider usually separate and slide in the same trajectory they were moving in before the crash.

Impact: The bike and/or rider may collide with other object like a vehicle or guardrail. Damage caused by impact can be evaluated and combined with sliding distance to help determine the motorcycle's speed during the collision sequence.

Post-impact motion: After impact, additional movement to the point of final rest can occur. The rider frequently separates from the motorcycle and travels independently to the final point of rest. Analysis of post-impact travel distance can also determine speeds associated with the collision. [10]

Training facilities (North America)


The Royal Canadian Mounted Police conducts On-Scene Collision Investigation (Level-2), Advanced Collision Analysis (Level-3), and Forensic Collision Reconstruction (Level-4) as well as Commercial Vehicle Collision and Pedestrian/Bicycle Collision courses at the Pacific Region Training Center (PRTC) located in Chilliwack, British Columbia. These courses are also available to Non-RCMP Police Agencies. [11]

Northwestern University Center for Public Safety conducts Traffic Crash Investigation courses utilized by both law enforcement and public agencies. [12]

The Institute of Police Technology and Management (IPTM) is a recognized institute for Crash Investigation for Law Enforcement as well as professional agencies. [13]

Law enforcement / police agencies

Toronto Police CRU vehicles at the scene of a large accident in North York in 2014 Toronto Police CRU.jpg
Toronto Police CRU vehicles at the scene of a large accident in North York in 2014

The Royal Canadian Mounted Police utilize full-time Forensic Collision Reconstructionists and Analysts as a service line. In British Columbia, they are referred to as ICARS (Integrated Collision Analysis and Reconstruction Service). [14] ICARS units are located in each RCMP District within the Province of B.C.

California Highway Patrol utilize a team deployment called MAIT ("Multidisciplinary Accident Investigation Team"). Each team consists of inspectors with specialized training in traffic collision reconstruction, traffic engineering, automotive engineering, and vehicle dynamics. MAITs are composed of one CHP sergeant (the team leader), two or more CHP officers, one Motor Carrier Specialist I (MCS I), and one Senior Transportation Engineer from Caltrans. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Anti-lock braking system</span> Safety anti-skid braking system used on aerospace and land vehicles

An anti-lock braking system (ABS) is a safety anti-skid braking system used on aircraft and on land vehicles, such as cars, motorcycles, trucks, and buses. ABS operates by preventing the wheels from locking up during braking, thereby maintaining tractive contact with the road surface and allowing the driver to maintain more control over the vehicle.

<span class="mw-page-title-main">Forensic engineering</span> Investigation of failures associated with legal intervention

Forensic engineering has been defined as "the investigation of failures—ranging from serviceability to catastrophic—which may lead to legal activity, including both civil and criminal". It includes the investigation of materials, products, structures or components that fail or do not operate or function as intended, causing personal injury, damage to property or economic loss. The consequences of failure may give rise to action under either criminal or civil law including but not limited to health and safety legislation, the laws of contract and/or product liability and the laws of tort. The field also deals with retracing processes and procedures leading to accidents in operation of vehicles or machinery. Generally, the purpose of a forensic engineering investigation is to locate cause or causes of failure with a view to improve performance or life of a component, or to assist a court in determining the facts of an accident. It can also involve investigation of intellectual property claims, especially patents. In the US, forensic engineers require a professional engineering license from each state.

<span class="mw-page-title-main">Road traffic safety</span> Methods and measures for reducing the risk of death and injury on roads

Road traffic safety refers to the methods and measures used to prevent road users from being killed or seriously injured. Typical road users include pedestrians, cyclists, motorists, vehicle passengers, and passengers of on-road public transport.

<span class="mw-page-title-main">Trace evidence</span> Type of evidence of physical contact

Trace evidence is created when objects make contact, and material is transferred. This type of evidence is usually not visible to the eye and requires specific tools and techniques to be obtained. Due to this, trace evidence is often overlooked, and investigators must be trained to detect it. This type of evidence can link a victim to suspects and a victim or suspect to the crime scene.

<span class="mw-page-title-main">Train event recorder</span> Train electronic recording device

A train event recorder – also called On-Train Monitoring Recorder (OTMR), On-Train Data Recorder (OTDR), Event Recorder System (ERS), Event Recorder Unit (ERU), or Juridical Recording Unit (JRU) – is a device that records data about the operation of train controls, the performance of the train in response to those controls, and the operation of associated control systems. It is similar in purpose to the flight data recorder or black box used on aircraft.

<span class="mw-page-title-main">Skid mark</span> Mark left by any solid which moves against another

A skid mark is the visible mark left by any solid which moves against another, and is an important aspect of trace evidence analysis in forensic science and forensic engineering. Skid marks caused by tires on roads occur when a vehicle wheel stops rolling and slides or spins on the surface of the road. Skid marks can be analyzed to find the maximum and minimum vehicle speed prior to an impact or incident. Skidding can also occur on black ice or diesel deposits on the road and may not leave a mark at all.

<span class="mw-page-title-main">Motorcycle safety</span> Study of the risks and dangers of motorcycling

Motorcycle safety is the study of the risks and dangers of motorcycling, and the approaches to mitigate that risk, focusing on motorcycle design, road design and traffic rules, rider training, and the cultural attitudes of motorcyclists and other road users.

<span class="mw-page-title-main">Bicycle safety</span> Safety practices to reduce risk associated with cycling

Bicycle safety is the use of road traffic safety practices to reduce risk associated with cycling. Risk can be defined as the number of incidents occurring for a given amount of cycling. Some of this subject matter is hotly debated: for example, which types of cycling environment or cycling infrastructure is safest for cyclists. The merits of obeying the traffic laws and using bicycle lighting at night are less controversial. Wearing a bicycle helmet may reduce the chance of head injury in the event of a crash.

<span class="mw-page-title-main">Motorcycle fatality rate in U.S. by year</span>

This is a list of numbers of motorcycle deaths in U.S. by year from 1994 to 2014. United States motorcycle fatalities increased every year for 11 years after reaching a historic low of 2,116 fatalities in 1997, then increased to over 5,000 around 2008 and then plateaued in the 4 to 5 thousands range in the 2010s. In nine years motorcycle deaths more than doubled from the late 1990s to 2008. Despite providing less than 1% of miles driven, they made up 15% of traffic deaths in 2012.

<span class="mw-page-title-main">Motorcycle training</span>

Motorcycle training teaches motorcycle riders the skills for riding on public roads. It is the equivalent of driver's education for car drivers. Training beyond basic qualification and licensing is available to those whose duty includes motorcycle riding, such as police, and additional rider courses are offered for street riding refreshers, sport riding, off-road techniques, and developing competitive skills for the motorcycle racetrack.

Crime reconstruction or crime scene reconstruction is the forensic science discipline in which one gains "explicit knowledge of the series of events that surround the commission of a crime using deductive and inductive reasoning, physical evidence, scientific methods, and their interrelationships". Gardner and Bevel explain that crime scene reconstruction "involves evaluating the context of a scene and the physical evidence found there in an effort to identify what occurred and in what order it occurred." Chisum and Turvey explain that "[h]olistic crime reconstruction is the development of actions and circumstances based on the system of evidence discovered and examined in relation to a particular crime. In this philosophy, all elements of evidence that come to light in a given case are treated as interdependent; the significance of each piece, each action, and each event falls and rises on the backs of the others."

An event data recorder (EDR), more specifically motor vehicle event data recorder (MVEDR), similar to an accident data recorder, (ADR) sometimes referred to informally as an automotive black box, is a device installed in some automobiles to record information related to traffic collisions. In the USA EDRs must meet federal standards, as described within the U.S. Code of Federal Regulations.

The following outline is provided as an overview of and topical guide to forensic science:

A roads policing unit (RPU), or a similarly named unit in some forces, is the specialist road traffic police unit of a British police force.

<span class="mw-page-title-main">Hurt Report</span> Motorcycle safety study published in 1981

The Hurt Report, officially Motorcycle Accident Cause Factors and Identification of Countermeasures, was a motorcycle safety study conducted in the United States, initiated in 1976 and published in 1981. The report is named after its primary author, Professor Harry Hurt.

<span class="mw-page-title-main">Traffic collision</span> Incident when a vehicle collides with another object

A traffic collision, also known as a motor vehicle collision, occurs when a vehicle collides with another vehicle, pedestrian, animal, road debris, or other moving or stationary obstruction, such as a tree, pole or building. Traffic collisions often result in injury, disability, death, and property damage as well as financial costs to both society and the individuals involved. Road transport is the most dangerous situation people deal with on a daily basis, but casualty figures from such incidents attract less media attention than other, less frequent types of tragedy. The commonly used term car accident is increasingly falling out of favor with many government departments and organizations, with the Associated Press style guide recommending caution before using the term. Some collisions are intentional vehicle-ramming attacks, staged crashes, vehicular homicide or vehicular suicide.

<span class="mw-page-title-main">MAIDS report</span>

The MAIDS report is a large-scale, comprehensive study of Powered Two Wheelers accidents carried out across five European countries, using both accident and exposure cases, as was done in the Hurt Report, and following the standards of OECD. Starting in September, 1999, over 2000 variables were coded in each of 921 accidents, and exposure data was collected on an additional 923 cases, collected at five locations in France, Germany, Netherlands, Spain and Italy. The investigation was carried out under the auspices of the Association of European Motorcycle Manufacturers (ACEM) with the support of the European Commission

<span class="mw-page-title-main">Accident data recorder</span> Device in motor vehicles that records traffic accident data

The accident data recorder is an independent electronic device that records before, during, and after a traffic accident relevant data and thus resembles a flight recorder.

<span class="mw-page-title-main">Tesla Autopilot</span> Suite of advanced driver-assistance system features by Tesla

Tesla Autopilot is an advanced driver-assistance system (ADAS) developed by Tesla that amounts to partial vehicle automation. Tesla provides "Base Autopilot" on all vehicles, which includes lane centering and traffic-aware cruise control. Owners may purchase an upgrade to "Enhanced Autopilot" (EA) which adds semi-autonomous navigation on limited access roadways, self-parking, and the ability to summon the car from a garage or parking spot. The company claims the features reduce accidents caused by driver negligence and fatigue from long-term driving. Collisions and deaths involving Tesla cars with Autopilot engaged have drawn the attention of the press and government agencies.

References

  1. People v. Herman
  2. The History of ACTAR Archived 2011-02-22 at the Wayback Machine , Retrieved on Feb. 22, 2010.
  3. Hugh Hurt Jr., Engineer Who Studied Motorcycle Accidents, Dies at 81, Martin, Douglas, The New York Times, 2009-12-03. Retrieved on Feb. 23, 2010.
  4. "The Ferrari That Split in Half". Slate.com. 2006-04-18. Retrieved 2010-02-24.
  5. "Bosch CDR News and Diagnostics" . Retrieved 2014-10-17.
  6. "Tesla Event Data Recorder information page".
  7. "Product".
  8. Using Accident Reconstruction Experts, Wettermark & Keith, Retrieved on Jun. 28, 2016.
  9. Taoka, George (March 1989). "Brake Reaction Times of Unalerted Drivers" (PDF). ITE Journal. 59 (3): 19–21.
  10. Motorcycle Accident Reconstruction Techniques, Kittel, Mark, P.E. 2012-06-11.
  11. Pacific Region Training Centre (PRTC) Archived 2014-10-18 at the Wayback Machine , Accessed 2014-Oct-17
  12. Northwestern University, Accessed 2014-Oct-17
  13. Institute of Police Technology and Management (IPTM), Accessed 2014-Oct-17.
  14. Integrated Collision Analysis and Reconstruction Service - ICARS, Accessed 2014-Oct-17
  15. California Highway Patrol, Multidisciplinary Accident Investigation Teams Archived 2014-10-22 at the Wayback Machine , Accessed 2014-Oct-17