Trifunctional purine biosynthetic protein adenosine-3

Last updated
GART
1rby.jpg
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases GART , AIRS, GARS, GARTF, PAIS, PGFT, PRGS, phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole synthetase
External IDs OMIM: 138440 MGI: 95654 HomoloGene: 637 GeneCards: GART
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000819
NM_001136005
NM_001136006
NM_175085

NM_010256
NM_001357351

RefSeq (protein)

NP_000810
NP_001129477
NP_001129478
NP_780294

NP_034386
NP_001344280

Location (UCSC) Chr 21: 33.5 – 33.54 Mb Chr 16: 91.42 – 91.44 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Trifunctional purine biosynthetic protein adenosine-3 is an enzyme that in humans is encoded by the GART gene. [5]

This protein is a trifunctional polypeptide. It has phosphoribosylamine—glycine ligase (EC 6.3.4.13), phosphoribosylglycinamide formyltransferase (EC 2.1.2.2), AIR synthetase (FGAM cyclase) (EC 6.3.3.1) activity which is required for de novo purine biosynthesis.

Related Research Articles

<span class="mw-page-title-main">Ribonucleotide</span> Nucleotide containing ribose as its pentose component

In biochemistry, a ribonucleotide is a nucleotide containing ribose as its pentose component. It is considered a molecular precursor of nucleic acids. Nucleotides are the basic building blocks of DNA and RNA. Ribonucleotides themselves are basic monomeric building blocks for RNA. Deoxyribonucleotides, formed by reducing ribonucleotides with the enzyme ribonucleotide reductase (RNR), are essential building blocks for DNA. There are several differences between DNA deoxyribonucleotides and RNA ribonucleotides. Successive nucleotides are linked together via phosphodiester bonds.

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

<span class="mw-page-title-main">Formylation</span>

Formylation refers to any chemical processes in which a compound is functionalized with a formyl group (-CH=O). In organic chemistry, the term is most commonly used with regards to aromatic compounds. In biochemistry the reaction is catalysed by enzymes such as formyltransferases.

<span class="mw-page-title-main">Purine nucleoside phosphorylase</span> Enzyme

Purine nucleoside phosphorylase, PNP, PNPase or inosine phosphorylase is an enzyme that in humans is encoded by the NP gene. It catalyzes the chemical reaction

Phosphoribosylformylglycinamidine cyclo-ligase is the fifth enzyme in the de novo synthesis of purine nucleotides. It catalyzes the reaction to form 5-aminoimidazole ribotide (AIR) from formylglycinamidine-ribonucleotide FGAM. This reaction closes the ring and produces a 5-membered imidazole ring of the purine nucleus (AIR):

Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms.

<span class="mw-page-title-main">Phosphoribosylamine</span> Chemical compound

Phosphoribosylamine (PRA) is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA. The vitamins thiamine and cobalamin also contain fragments derived from PRA.

<span class="mw-page-title-main">Amidophosphoribosyltransferase</span> Mammalian protein found in Homo sapiens

Amidophosphoribosyltransferase (ATase), also known as glutamine phosphoribosylpyrophosphate amidotransferase (GPAT), is an enzyme responsible for catalyzing the conversion of 5-phosphoribosyl-1-pyrophosphate (PRPP) into 5-phosphoribosyl-1-amine (PRA), using the amine group from a glutamine side-chain. This is the committing step in de novo purine synthesis. In humans it is encoded by the PPAT gene. ATase is a member of the purine/pyrimidine phosphoribosyltransferase family.

<span class="mw-page-title-main">Phosphoribosyl-N-formylglycineamide</span> Chemical compound

Phosphoribosyl-N-formylglycineamide is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA. The vitamins thiamine and cobalamin also contain fragments derived from FGAR.

<span class="mw-page-title-main">Inosine monophosphate synthase</span> Mammalian protein found in Homo sapiens

Bifunctional purine biosynthesis protein PURH is a protein that in humans is encoded by the ATIC gene.

<span class="mw-page-title-main">F13B</span> Mammalian protein found in Homo sapiens

Coagulation factor XIII B chain is a protein that in humans is encoded by the F13B gene.

<span class="mw-page-title-main">Phosphoribosylamine—glycine ligase</span>

Phosphoribosylamine—glycine ligase, also known as glycinamide ribonucleotide synthetase (GARS), (EC 6.3.4.13) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosylaminoimidazolesuccinocarboxamide synthase</span> Class of enzymes

In molecular biology, the protein domain SAICAR synthase is an enzyme which catalyses a reaction to create SAICAR. In enzymology, this enzyme is also known as phosphoribosylaminoimidazolesuccinocarboxamide synthase. It is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">AMY2A</span> Mammalian protein found in Homo sapiens

Pancreatic alpha-amylase is an enzyme that in humans is encoded by the AMY2A gene.

<span class="mw-page-title-main">MTHFD1</span>

MTHFD1 is a gene located in humans on chromosome 14 that encodes for a protein with three distinct enzymatic activities. C-1-tetrahydrofolate synthase, cytoplasmic also known as C1-THF synthase is an enzyme that in humans is encoded by the MTHFD1 gene.

<span class="mw-page-title-main">DNMT3L</span> Protein-coding gene in the species Homo sapiens

DNA (cytosine-5)-methyltransferase 3-like is an enzyme that in humans is encoded by the DNMT3L gene.

<span class="mw-page-title-main">RRM1</span> Protein-coding gene in the species Homo sapiens

Ribonucleoside-diphosphate reductase large subunit is an enzyme that in humans is encoded by the RRM1 gene.

<span class="mw-page-title-main">Glycineamide ribonucleotide</span> Chemical compound

Glycineamide ribonucleotide is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, and hence is a building block for DNA and RNA. The vitamins thiamine and cobalamin also contain fragments derived from GAR.

<span class="mw-page-title-main">Phosphoribosylglycinamide formyltransferase</span>

Phosphoribosylglycinamide formyltransferase (EC 2.1.2.2, 2-amino-N-ribosylacetamide 5'-phosphate transformylase, GAR formyltransferase, GAR transformylase, glycinamide ribonucleotide transformylase, GAR TFase, 5,10-methenyltetrahydrofolate:2-amino-N-ribosylacetamide ribonucleotide transformylase) is an enzyme with systematic name 10-formyltetrahydrofolate:5'-phosphoribosylglycinamide N-formyltransferase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Purinosome</span>

The purinosome is a putative multi-enzyme complex that carries out de novo purine biosynthesis within the cell. It is postulated to include all six of the human enzymes identified as direct participants in this ten-step biosynthetic pathway converting phosphoribosyl pyrophosphate to inosine monophosphate:

References

  1. 1 2 3 ENSG00000159131 GRCh38: Ensembl release 89: ENSG00000262473, ENSG00000159131 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022962 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Gnirke A, Barnes TS, Patterson D, Schild D, Featherstone T, Olson MV (July 1991). "Cloning and in vivo expression of the human GART gene using yeast artificial chromosomes". EMBO J. 10 (7): 1629–34. doi:10.1002/j.1460-2075.1991.tb07685.x. PMC   452831 . PMID   2050105.

Further reading