Triticum carthlicum

Last updated

Persian wheat
Triticum carthlicum Nevski - Persian wheat - TRCA24 - Tracey Slotta @ USDA-NRCS PLANTS Database.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Pooideae
Genus: Triticum
Species:
T. carthlicum
Binomial name
Triticum carthlicum
Nevski, 1934 [1]

Triticum carthlicum Nevski, 1934, [1] the Persian wheat, [2] is a wheat with a tetraploid genome.[ citation needed ]

Contents

Some scholars refer to it as T. turgidum subspecies carthlicum. [3] [4] [5] Recent research suggest that T. carthlicum originated from a cross between domesticated emmer wheat and T. aestivum . [6] [7]

Diseases

T. carthlicum is the source of Pm4b, a resistance gene encoding a MCTP kinase used in hexaploid wheat. [8] Pmb4 confers powdery mildew resistance. [8]

Related Research Articles

<span class="mw-page-title-main">Wheat</span> Genus of grass cultivated for the grain

Wheat is a grass widely cultivated for its seed, a cereal grain that is a worldwide staple food. The many species of wheat together make up the genus Triticum ; the most widely grown is common wheat. The archaeological record suggests that wheat was first cultivated in the regions of the Fertile Crescent around 9600 BC. Botanically, the wheat kernel is a caryopsis, a type of fruit.

<span class="mw-page-title-main">Einkorn wheat</span> Primitive wheat

Einkorn wheat can refer either to a wild species of wheat (Triticum) or to its domesticated form. The wild form is T. boeoticum, and the domesticated form is T. monococcum. Einkorn is a diploid species of hulled wheat, with tough glumes ('husks') that tightly enclose the grains. The cultivated form is similar to the wild, except that the ear stays intact when ripe and the seeds are larger. The domestic form is known as "petit épeautre" in French, "Einkorn" in German, "einkorn" or "littlespelt" in English, "piccolo farro" in Italian and "escanda menor" in Spanish. The name refers to the fact that each spikelet contains only one grain.

<span class="mw-page-title-main">Polyploidy</span> Condition where cells of an organism have more than two paired sets of chromosomes

Polyploidy is a condition in which the cells of an organism have more than one pair of (homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two complete sets of chromosomes, one from each of two parents; each set contains the same number of chromosomes, and the chromosomes are joined in pairs of homologous chromosomes. However, some organisms are polyploid. Polyploidy is especially common in plants. Most eukaryotes have diploid somatic cells, but produce haploid gametes by meiosis. A monoploid has only one set of chromosomes, and the term is usually only applied to cells or organisms that are normally diploid. Males of bees and other Hymenoptera, for example, are monoploid. Unlike animals, plants and multicellular algae have life cycles with two alternating multicellular generations. The gametophyte generation is haploid, and produces gametes by mitosis; the sporophyte generation is diploid and produces spores by meiosis.

<span class="mw-page-title-main">Triticale</span> Hybrid wheat/rye crop

Triticale is a hybrid of wheat (Triticum) and rye (Secale) first bred in laboratories during the late 19th century in Scotland and Germany. Commercially available triticale is almost always a second-generation hybrid, i.e., a cross between two kinds of primary (first-cross) triticales. As a rule, triticale combines the yield potential and grain quality of wheat with the disease and environmental tolerance of rye. Only recently has it been developed into a commercially viable crop. Depending on the cultivar, triticale can more or less resemble either of its parents. It is grown mostly for forage or fodder, although some triticale-based foods can be purchased at health food stores and can be found in some breakfast cereals.

<span class="mw-page-title-main">Emmer</span> Type of wheat

Emmer wheat or hulled wheat is a type of awned wheat. Emmer is a tetraploid. The domesticated types are Triticum turgidum subsp. dicoccum and T. t. conv. durum. The wild plant is called T. t. subsp. dicoccoides. The principal difference between the wild and the domestic forms is that the ripened seed head of the wild plant shatters and scatters the seed onto the ground, while in the domesticated emmer, the seed head remains intact, thus making it easier for humans to harvest the grain.

<span class="mw-page-title-main">Domestication</span> Selective breeding of plants and animals to serve humans

Domestication is a multi-generational mutualistic relationship between humans and other organisms, in which humans take over control and care to obtain a steady supply of resources including food. The process was gradual and geographically diffuse, based on trial and error.

<span class="mw-page-title-main">Durum</span> Species of wheat used for food

Durum wheat, also called pasta wheat or macaroni wheat, is a tetraploid species of wheat. It is the second most cultivated species of wheat after common wheat, although it represents only 5% to 8% of global wheat production. It was developed by artificial selection of the domesticated emmer wheat strains formerly grown in Central Europe and the Near East around 7000 BC, which developed a naked, free-threshing form. Like emmer, durum wheat is awned. It is the predominant wheat that grows in the Middle East.

<span class="mw-page-title-main">Spelt</span> Species of grain

Spelt, also known as dinkel wheat or hulled wheat, is a species of wheat that has been cultivated since approximately 5000 BCE.

<span class="mw-page-title-main">Khorasan wheat</span> Species of grass

Khorasan wheat or Oriental wheat is a tetraploid wheat species. The grain is twice the size of modern-day wheat, and has a rich, nutty flavor.

<span class="mw-page-title-main">Founder crops</span> Original agricultural crops

The founder crops or primary domesticates are a group of flowering plants that were domesticated by early farming communities in Southwest Asia and went on to form the basis of agricultural economies across Eurasia. As originally defined by Daniel Zohary and Maria Hopf, they consisted of three cereals, four pulses, and flax. Subsequent research has indicated that many other species could be considered founder crops. These species were amongst the first domesticated plants in the world.

<span class="mw-page-title-main">Common wheat</span> Species of plant

Common wheat, also known as bread wheat, is a cultivated wheat species. About 95% of wheat produced worldwide is common wheat; it is the most widely grown of all crops and the cereal with the highest monetary yield.

<span class="mw-page-title-main">Taxonomy of wheat</span>

During 10,000 years of cultivation, numerous forms of wheat, many of them hybrids, have developed under a combination of artificial and natural selection. This diversity has led to much confusion in the naming of wheats. Genetic and morphological characteristics of wheat influence its classification; many common and botanical names of wheat are in current use.

<span class="mw-page-title-main">Triticeae</span> Tribe of grasses

Triticeae is a botanical tribe within the subfamily Pooideae of grasses that includes genera with many domesticated species. Major crop genera found in this tribe include wheat, barley, and rye; crops in other genera include some for human consumption, and others used for animal feed or rangeland protection. Among the world's cultivated species, this tribe has some of the most complex genetic histories. An example is bread wheat, which contains the genomes of three species with only one being a wheat Triticum species. Seed storage proteins in the Triticeae are implicated in various food allergies and intolerances.

<i>Aegilops tauschii</i> Species of grass

Aegilops tauschii, the Tausch's goatgrass or rough-spike hard grass, is an annual grass species. It is native to Crimea, the Caucasus region, western and Central Asia, Afghanistan, Pakistan, the western Himalaya, and parts of China, and has been introduced to other locales, including California.

<span class="mw-page-title-main">Hypersensitive response</span>

Hypersensitive response (HR) is a mechanism used by plants to prevent the spread of infection by microbial pathogens. HR is characterized by the rapid death of cells in the local region surrounding an infection and it serves to restrict the growth and spread of pathogens to other parts of the plant. It is analogous to the innate immune system found in animals, and commonly precedes a slower systemic response, which ultimately leads to systemic acquired resistance (SAR). HR can be observed in the vast majority of plant species and is induced by a wide range of plant pathogens such as oomycetes, viruses, fungi and even insects.

<i>Zymoseptoria tritici</i> Species of fungus

Zymoseptoria tritici, synonyms Septoria tritici, Mycosphaerella graminicola, is a species of filamentous fungus, an ascomycete in the family Mycosphaerellaceae. It is a wheat plant pathogen causing septoria leaf blotch that is difficult to control due to resistance to multiple fungicides. The pathogen today causes one of the most important diseases of wheat.

<span class="mw-page-title-main">Plant disease resistance</span> Ability of a plant to stand up to trouble

Plant disease resistance protects plants from pathogens in two ways: by pre-formed structures and chemicals, and by infection-induced responses of the immune system. Relative to a susceptible plant, disease resistance is the reduction of pathogen growth on or in the plant, while the term disease tolerance describes plants that exhibit little disease damage despite substantial pathogen levels. Disease outcome is determined by the three-way interaction of the pathogen, the plant and the environmental conditions.

Triticum turgidum, is a species of wheat. It is an annual and grows primarily in temperate areas and is native to countries around the eastern Mediterranean, down to Iran and east to Xinjiang, China.

Ernest Robert Sears was an American geneticist, botanist, pioneer of plant genetics, and leading expert on wheat cytogenetics. Sears and Sir Ralph Riley (1924–1999) are perhaps the two most important founders of chromosome engineering in plant breeding.

Mildew locus o (MLO) is a plant-specific gene family. Specific members of the Mildew Locus O gene family act as powdery mildew susceptibility factors. Their inactivation, as the result of a loss-of-function mutation, gene knock-out, or knock-down, is associated with a peculiar form of resistance, referred to as mlo resistance. The mlo gene family is widely conserved across the plant kingdom with some members evolving as early as the first land plants. Mlo proteins contain seven highly conserved transmembrane domains, as well as a calmodulin-binding domain. TaMLO genes are the MLOs in bread wheat, Triticum aestivum.

References

  1. 1 2 "Triticum carthlicum Nevski". The Plant List .
  2. USDA, NRCS (n.d.). "Triticum carthlicum". The PLANTS Database (plants.usda.gov). Greensboro, North Carolina: National Plant Data Team. Retrieved 16 December 2015.
  3. "Triticum turgidum subsp. carthlicum".
  4. "Triticum turgidum carthlicum".
  5. "Triticum turgidum L. subsp. carthlicum".
  6. Gupta, Pushpendra K. (2021). "GWAS for genetics of complex quantitative traits: Genome to pangenome and SNPs to SVs and k-mers". BioEssays. 43 (11): e2100109. doi:10.1002/bies.202100109. PMID   34486143. S2CID   237423621.
    Yuan, Yuxuan; Bayer, Philipp E.; Batley, Jacqueline; Edwards, David (2021). "Current status of structural variation studies in plants". Plant Biotechnol Journal. 19 (11): 2153–2163. doi:10.1111/pbi.13646. PMC   8541774 . PMID   34101329.
    These reviews cite this research.
    De Oliveira, Romain; Rimbert, Hélène; Balfourier, François; Kitt, Jonathan; Dynomant, Emeric; Vrána, Jan; Doležel, Jaroslav; Cattonaro, Federica; Paux, Etienne; Choulet, Frédéric (18 August 2020). "Structural Variations Affecting Genes and Transposable Elements of Chromosome 3B in Wheats". Frontiers in Genetics . 11: 891. doi: 10.3389/fgene.2020.00891 . PMC   7461782 . PMID   33014014.
  7. Matsuoka, Y. (1 May 2011). "Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and Allopolyploid Speciation in their Diversification". Plant and Cell Physiology . 52 (5): 750–764. doi: 10.1093/pcp/pcr018 . PMID   21317146.
  8. 1 2 Sanchez-Martin, Javier; Keller, Beat (2021). "NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae". Current Opinion in Plant Biology . Elsevier BV. 62: 102053. doi: 10.1016/j.pbi.2021.102053 . PMID   34052730. S2CID   235256432.

Bibliography