Turbatrix aceti

Last updated

Vinegar eels
Die Frau als Hausarztin (1911) 041 Verdorbener Essig mit Essigalen.png
Illustration of vinegar eels
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Nematoda
Class: Secernentea
Order: Tylenchida
Family: Panagrolaimidae
Genus: Turbatrix
Species:
T. aceti
Binomial name
Turbatrix aceti
(Müller, 1783)
Synonyms
  • Anguillula aceti

Turbatrix aceti (vinegar eels, vinegar nematode, Anguillula aceti) are free-living nematodes that feed on a microbial culture called mother of vinegar (used to create vinegar) and may be found in unfiltered vinegar. They were discovered by Pierre Borel in 1656. [1]

Their environment makes them exceptionally tolerant of variation in acidity and alkalinity and they may be able to tolerate a wider range than any other species, being able to survive from pH 1.6 to 11. [2]

Vinegar eels are often given to fry (baby fish) as a live food, like microworms. [1] [3] Although they are harmless and non-parasitic, leaving eels in vinegar is considered objectionable (for example, in the United States they are not permitted in vinegar destined for American consumers). [4] Manufacturers normally filter and pasteurize their product prior to bottling, destroying the live bacterial and yeast culture that these nematodes require for sustenance.

At high concentration near a boundary, vinegar eels synchronize their undulations, forming a collective wave. [5] [6]

Aging in T. aceti is associated with a decline in the ability to repair DNA damage, [7] [8] a finding that is consistent with the theory that DNA damage contributes to aging. [9]

Related Research Articles

<span class="mw-page-title-main">Vinegar</span> Liquid consisting mainly of acetic acid and water

Vinegar is an aqueous solution of acetic acid and trace compounds that may include flavorings. Vinegar typically contains from 5% to 18% acetic acid by volume. Usually, the acetic acid is produced by a double fermentation, converting simple sugars to ethanol using yeast and ethanol to acetic acid using acetic acid bacteria. Many types of vinegar are made, depending on source materials. The product is now mainly used in the culinary arts as a flavorful, acidic cooking ingredient or in pickling. Various types are used as condiments or garnishes, including balsamic vinegar and malt vinegar.

<span class="mw-page-title-main">Mother of vinegar</span> Biofilm formed on fermenting alcoholic liquids

Mother of vinegar is a biofilm composed of a form of cellulose, yeast, and bacteria that sometimes develops on fermenting alcoholic liquids during the process that turns alcohol into acetic acid with the help of oxygen from the air and acetic acid bacteria (AAB). It is similar to the symbiotic culture of bacteria and yeast (SCOBY) mostly known from production of kombucha, but develops to a much lesser extent due to lesser availability of yeast, which is often no longer present in wine/cider at this stage, and a different population of bacteria. Mother of vinegar is often added to wine, cider, or other alcoholic liquids to produce vinegar at home, although only the bacteria is required, but historically has also been used in large scale production.

A wrinkle, also known as a rhytid, is a fold, ridge or crease in an otherwise smooth surface, such as on skin or fabric. Skin wrinkles typically appear as a result of ageing processes such as glycation, habitual sleeping positions, loss of body mass, sun damage, or temporarily, as the result of prolonged immersion in water. Age wrinkling in the skin is promoted by habitual facial expressions, aging, sun damage, smoking, poor hydration, and various other factors. In humans, it can also be prevented to some degree by avoiding excessive solar exposure and through diet.

<span class="mw-page-title-main">Non-homologous end joining</span> Pathway that repairs double-strand breaks in DNA

Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair (HDR), which requires a homologous sequence to guide repair. NHEJ is active in both non-dividing and proliferating cells, while HDR is not readily accessible in non-dividing cells. The term "non-homologous end joining" was coined in 1996 by Moore and Haber.

<span class="mw-page-title-main">Sperm</span> Male reproductive cell in anisogamous forms of sexual reproduction

Sperm is the male reproductive cell, or gamete, in anisogamous forms of sexual reproduction. Animals produce motile sperm with a tail known as a flagellum, which are known as spermatozoa, while some red algae and fungi produce non-motile sperm cells, known as spermatia. Flowering plants contain non-motile sperm inside pollen, while some more basal plants like ferns and some gymnosperms have motile sperm.

<span class="mw-page-title-main">Werner syndrome helicase</span> Protein-coding gene in the species Homo sapiens

Werner syndrome ATP-dependent helicase, also known as DNA helicase, RecQ-like type 3, is an enzyme that in humans is encoded by the WRN gene. WRN is a member of the RecQ Helicase family. Helicase enzymes generally unwind and separate double-stranded DNA. These activities are necessary before DNA can be copied in preparation for cell division. Helicase enzymes are also critical for making a blueprint of a gene for protein production, a process called transcription. Further evidence suggests that Werner protein plays a critical role in repairing DNA. Overall, this protein helps maintain the structure and integrity of a person's DNA.

A DNA repair-deficiency disorder is a medical condition due to reduced functionality of DNA repair.

<span class="mw-page-title-main">MSH2</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein Msh2 also known as MutS homolog 2 or MSH2 is a protein that in humans is encoded by the MSH2 gene, which is located on chromosome 2. MSH2 is a tumor suppressor gene and more specifically a caretaker gene that codes for a DNA mismatch repair (MMR) protein, MSH2, which forms a heterodimer with MSH6 to make the human MutSα mismatch repair complex. It also dimerizes with MSH3 to form the MutSβ DNA repair complex. MSH2 is involved in many different forms of DNA repair, including transcription-coupled repair, homologous recombination, and base excision repair.

Kinetic proofreading is a mechanism for error correction in biochemical reactions, proposed independently by John Hopfield (1974) and Jacques Ninio (1975). Kinetic proofreading allows enzymes to discriminate between two possible reaction pathways leading to correct or incorrect products with an accuracy higher than what one would predict based on the difference in the activation energy between these two pathways.

<span class="mw-page-title-main">Ku70</span> Protein-coding gene in the species Homo sapiens

Ku70 is a protein that, in humans, is encoded by the XRCC6 gene.

<span class="mw-page-title-main">Ku80</span> Protein-coding gene in the species Homo sapiens

Ku80 is a protein that, in humans, is encoded by the XRCC5 gene. Together, Ku70 and Ku80 make up the Ku heterodimer, which binds to DNA double-strand break ends and is required for the non-homologous end joining (NHEJ) pathway of DNA repair. It is also required for V(D)J recombination, which utilizes the NHEJ pathway to promote antigen diversity in the mammalian immune system.

<span class="mw-page-title-main">Cyclin A2</span> Protein-coding gene in the species Homo sapiens

Cyclin-A2 is a protein that in humans is encoded by the CCNA2 gene. It is one of the two types of cyclin A: cyclin A1 is expressed during meiosis and embryogenesis while cyclin A2 is expressed in the mitotic division of somatic cells.

<span class="mw-page-title-main">Bloom syndrome protein</span> Mammalian protein found in humans

Bloom syndrome protein is a protein that in humans is encoded by the BLM gene and is not expressed in Bloom syndrome.

<span class="mw-page-title-main">MDC1</span> Protein-coding gene in the species Homo sapiens

Mediator of DNA damage checkpoint protein 1 is a 2080 amino acid long protein that in humans is encoded by the MDC1 gene located on the short arm (p) of chromosome 6. MDC1 protein is a regulator of the Intra-S phase and the G2/M cell cycle checkpoints and recruits repair proteins to the site of DNA damage. It is involved in determining cell survival fate in association with tumor suppressor protein p53. This protein also goes by the name Nuclear Factor with BRCT Domain 1 (NFBD1).

<span class="mw-page-title-main">GTF2H5</span> Protein-coding gene in the species Homo sapiens

General transcription factor IIH subunit 5 is a protein that in humans is encoded by the GTF2H5 gene.

The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although both mitochondrial and nuclear DNA damage can contribute to aging, nuclear DNA is the main subject of this analysis. Nuclear DNA damage can contribute to aging either indirectly or directly.

<span class="mw-page-title-main">Nematode</span> Phylum of worms

The nematodes, roundworms or eelworms constitute the phylum Nematoda. They are a diverse animal phylum inhabiting a broad range of environments. Most species are free-living, feeding on microorganisms, but there are many that are parasitic. The parasitic worms (helminths) are the cause of soil-transmitted helminthiases.

<span class="mw-page-title-main">8-Oxo-2'-deoxyguanosine</span> Chemical compound

8-Oxo-2'-deoxyguanosine (8-oxo-dG) is an oxidized derivative of deoxyguanosine. 8-Oxo-dG is one of the major products of DNA oxidation. Concentrations of 8-oxo-dG within a cell are a measurement of oxidative stress.

<i>Acetobacter aceti</i> Species of bacterium

Acetobacter aceti, a Gram-negative bacterium that moves using its peritrichous flagella, was discovered when Louis Pasteur proved it to be the cause of conversion of ethanol to acetic acid in 1864. Today, A.aceti is recognized as a species within the genus Acetobacter, belonging to the family Acetobacteraceae in the class Alphaproteobacteria. Its bacterial motility plays an important role in the formation of biofilms, intricate communities where A. aceti cells aggregate and collaborate, further enhancing their ability to metabolize ethanol and produce acetic acid. Widely distributed in various environmental niches, this benign microorganism thrives in habitats abundant in fermentable sugars, such as flowers, fruits, honey, water, and soil, present wherever sugar fermentation occurs. A. aceti grows best within temperatures ranging from 25 to 30 degrees Celsius, with an upper limit of 35 degrees Celsius, and in slightly acidic conditions with a pH between 5.5 to 6.3. A. aceti has long been used in the fermentation industry efficiently producing acetic acid from alcohol as an obligate aerobe dependent on oxygen as the terminal electron acceptor. A. aceti, classified as an acidophile, able to survive in acidic environments, possesses an acidified cytoplasm, providing most proteins with acid stability. The microorganism's ability to thrive in environments rich in fermentable sugars shows its potential as an organism for studying microbial metabolism and adaptation.


Swarmalators are generalizations of phase oscillators that swarm around in space as they synchronize in time. They were introduced to model the diverse real-world systems which both sync and swarm, such as vinegar eels, magnetic domain walls, and Japanese tree frogs. More formally, they are dynamical units with spatial degrees of freedom and internal degrees of freedom whose dynamics are coupled.

References

  1. 1 2 "The Chesapeake Area Killifish Club: Vinegar Eels". www.chesapeakekillifish.org. Retrieved 2019-01-19.
  2. Schulze-Makuch, Dirk; Irwin, Louis Neal (2008-10-02). Life in the Universe: Expectations and Constraints. Springer Science & Business Media. p. 57. ISBN   9783540768166.
  3. "Vinegar Eels". 2012-02-22. Archived from the original on 2012-02-22. Retrieved 2019-01-19.
  4. "FDA: Sec. 525.825 Vinegar, Definitions - Adulteration with Vinegar Eels (CPG 7109.22)". fda.gov. Retrieved 26 September 2018.
  5. Peshkov, Anton; McGaffigan, Sonia; Quillen, Alice C. (2022). "Synchronized oscillations in swarms of nematode Turbatrix aceti". Soft Matter. 18 (6): 1174–1182. arXiv: 2104.10316 . Bibcode:2022SMat...18.1174P. doi:10.1039/D1SM01572A. PMID   35029257. S2CID   235593417.
  6. Quillen, A. C.; Peshkov, A.; Wright, E.; McGaffigan, S. (2021). "Metachronal waves in concentrations of swimming Turbatrix aceti nematodes and an oscillator chain model for their coordinated motions". Physical Review E. 104 (1): 014412. arXiv: 2101.06809 . Bibcode:2021PhRvE.104a4412Q. doi:10.1103/PhysRevE.104.014412. PMID   34412226. S2CID   231661689.
  7. Targovnik HS, Locher SE, Hart TF, Hariharan PV. Age-related changes in the excision repair capacity of Turbatrix aceti. Mech Ageing Dev. 1984 Sep;27(1):73-81. doi: 10.1016/0047-6374(84)90083-6. PMID 6492888
  8. Targovnik HS, Locher SE, Hariharan PV. Age associated alteration in DNA damage and repair capacity in Turbatrix aceti exposed to ionizing radiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1985 Mar;47(3):255-60. doi: 10.1080/09553008514550381. PMID 3872278
  9. Gensler HL, Bernstein H. DNA damage as the primary cause of aging. Q Rev Biol. 1981 Sep;56(3):279-303. doi: 10.1086/412317. PMID 7031747

Commons-logo.svg Media related to Turbatrix aceti at Wikimedia Commons