University of Utah School of Computing

Last updated

The Kahlert School of Computing [1] is a school within the College of Engineering at the University of Utah in Salt Lake City, Utah.

Contents

Merrill Engineering Building, University of Utah Merrill Engineering Building, University of Utah.jpg
Merrill Engineering Building, University of Utah

School of Computing

The school offers undergraduate and graduate degrees in computer science. The school has major research funding that supports initiatives in:

The School of Computing has made important contributions to computer graphics and computer animation. [2] These contributions include:

History

Computing research at the University of Utah started in 1965 when former university president James Fletcher recruited Berkeley professor David C. Evans to return to his home state to establish a computer science division within the electrical engineering department. Evans graduated from the University of Utah in 1953 with a Ph.D. in physics. Before returning to Utah, Evans developed computing systems, first at Bendix as project manager of the commercially successful G-15 computer and follow-on G-20 (1955-1962). While at Berkeley from 1962-1965, Evans and G-15 architect Harry Huskey initiated Project Genie, which led to innovations such as the Scientific Data Systems 940 time-sharing operating system.

Upon his return to the University of Utah, Evans wanted to cultivate a culture of creativity. He hired faculty with diverse experiences and backgrounds and encouraged interactive use of computing for a variety of creative pursuits.

Evans was immediately awarded a large ARPA grant from Robert William Taylor, then director of the ARPA IPTO office, to create a center of excellence in computer graphics. Evans believed that small, interactive computers should be developed to augment human creativity, and he planned to use the ARPA award to pursue this line of research. Leveraging the multimillion-dollar funding from ARPA, Evans was able to harness the absolute state-of-the-art in equipment needed to advance this area.

The University of Utah was one of the original four nodes of ARPANET, the world's first packet-switched network and embryo of the current worldwide Internet. [3] In late 1969, the U's computer graphics department was linked into the node at Stanford Research Institute in Menlo Park, California to complete the initial four-node network.

This computer science division at Utah became its own department in 1973.

ARPANET

Efforts in networking and storage at the University of Utah were spurred by Evans' role in establishing a new computer science division in 1965. Bolstered by a large contract from ARPA, each of the four original nodes interfaced with different computers to explore interoperability issues: a PDP-10 (University of Utah), an SDS Sigma 7 (University of California, Los Angeles), an SDS 940 (Stanford Research Institute) and an IBM 360 (University of California, Santa Barbara).

Evans and graduate student Steve Carr came from Berkeley to lead early efforts in ARPANET research at University of Utah. Carr participated in the first Network Working Group meeting in 1968, chaired by Elmer Shapiro from SRI, and also attended by Steve Crocker, Jeff Rulifson, and Ron Stoughton. With UCLA researchers, Carr designed the initial Host-to-Host Communication Protocol for the Arpanet(1970).

Taylor was credited with initiating the ARPANET project as director of ARPA's Information Processing Techniques Office (1966-1969). The architecture of the ARPANET and the use of a separate Interface Message Processor (IMP) was hatched in 1967 by Wesley A. Clark of Washington University while in a rental car with Taylor and Evans. Taylor worked with Evans at University of Utah in 1970, before heading to California to launch legendary computer science laboratory Xerox Palo Alto Research Center, which later employed several Utah graduates, including Alan Kay, John Warnock, Martin Newell, Patrick Baudelaire, and Frank Crow.

Taylor and Larry Roberts prepared and signed the networking program plan for ARPA funding in 1968. An RFP for procurement of 4 IMPs was released after the program plan was approved by the Director of ARPA. Larry Roberts and Barry Wessler (and other contractors) reviewed the proposals and selected BBN Technologies as the winner. Barry Wessler remained at ARPA managing the IMP implementation and first installations at UCLA, SRI, UCSB and Utah. In 1970 Barry Wessler left ARPA and became a Utah graduate student under Evans until he received his Ph.D. in 1973.

Computer Graphics at Utah

The powerful resources at Utah were instrumental in attracting the very best faculty, students and collaborators to work with Evans on his vision. In recruiting Ivan Sutherland, Evans planned both his department and a company (Evans and Sutherland, founded in 1968) that could develop interactive graphics workstations. Evans and Sutherland scoured the research community to attract the best talent among the skill sets required to build these systems. From MIT, they recruited engineering and signal/image processing talent, including faculty Thomas Stockham and Chuck Seitz, and Ph.D. students Donald Oestreicher and Alan L. Davis. From Ecole Polytechnique and other universities in France, they attracted the mathematical talent of students Robert Mahl, Henri Gouraud, Patrick Baudelaire, and Bui Tuong Phong.

During the era of Evans and Sutherland, graduates of the Utah program made seminal contributions to rendering, shading, animation, visualization and virtual reality (notably the work of John Warnock in 1969, Henri Gouraud in 1971, Donald Vickers in 1972, Phong in 1973, Ed Catmull and Fred Parke in 1974, Henry Fuchs and Martin Newell in 1975, Frank Crow in 1976, Jim Blinn in 1978, Jim Kajiya in 1979, and many others). Additional graphics faculty hired during this time included computer artist Ron Resch (1970-1979) and Rich Riesenfeld, an expert in computer-aided geometric design (1972–present).

Early Graphics and Visualization Images

In 1968, the equipment needed to produce an image representation was significant: a mainframe Univac performed the computations to produce the image, it sent its result to a PDP-8, which through analog output lines sent the image to a Tektronix oscilloscope to draw lines. A camera then recorded the image, without the image ever being displayed on a screen. Color images required several photos, each with a different colored filter. John Warnock, who received his Ph.D. in 1969, developed the first scientific visualizations using this approach. After Utah, Warnock moved to Evans and Sutherland, Xerox PARC, and then co-founded Adobe in 1982.

Utah Teapot

The Utah teapot, a model by Martin Newell (1975). Utah teapot simple 2.png
The Utah teapot, a model by Martin Newell (1975).

The Utah Teapot is one of the most iconic image in computer graphics. [4] It was designed by Martin Newell, inspired by an actual Melitta teapot he purchased from a department store in Salt Lake City. Newell was a student of Evans, graduating in 1975, and then a member of the faculty from 1975 to 1977. Originally the teapot was sketched by hand using paper and pencil. Newell then edited bezier control points on a Tektronix storage tube. With this information he created a dataset of mathematical coordinates and a 3-D wire framing. The Utah Teapot was one of the first widely available and photogenic curved-surface 3-D models, an early high-quality virtual object. For this reason, it became a common benchmark model for image synthesis programs.

Other Modeling Efforts

Utah students modeled other common objects. For his 1971 dissertation, Henri Gouraud developed Gouraud shading, using his wife Sylvie's face as a model. In 1972, Ivan Sutherland challenged his graphics class to choose something iconic to realistically render. The students selected the Volkswagen Beetle—as a symbol of global culture, because it was large enough to measure as a group, and because Ivan’s wife, Marsha, owned one. The students painted points and lines on the surface of the Beetle to describe a set of polygons. A volleyball stanchion and joints in the pavement formed a three-dimensional reference system. The points and polygons were rendered using hardware developed by 1970 Utah Ph.D. Gary Watkins to imprint shaded images onto a direct film recorder. Also in 1972, Ed Catmull and Fred Parke, both students of Sutherland, made a video illustrating the process of modeling Catmull's left hand and its use in animation. Catmull made a plaster mold, to which he then added points and polygons in a similar way. Catmull received his Ph.D. in 1974, and went on to found Pixar. The video has recently been added to the National Film register as one of the earliest fully rendered computer animations.

Graphics and Visualization Center

In 1991, Brown University, Caltech, Cornell University, University of Utah and University of North Carolina partnered to form the Graphics and Visualization Center, an NSF Science and Technology Center. The focus of the center was to conduct graphics research in modeling, rendering, user interfaces and high-performance architectures. The research was driven by two application areas: scientific visualization and telecollaboration in virtual environments. Utah's involvement, led by Rich Riesenfeld (faculty from 1972 to 2015) and Elaine Cohen (faculty since 1984), included the mathematics of surfaces, modeling, human-computer interfaces, and design. The research built on Riesenfeld and Cohen's prior work on B-splines, NURBs and the Oslo-algorithm for geometric and shaded rendering computations.

Programming Languages and Personal Computers

Alan Kay, a student of Evans, developed object-oriented programming technology, a foundation of current programming systems. At Utah, Kay learned to think of computers as dynamic, interactive personal devices to support creative thought - the founding principle of his work. Kay's Ph.D. thesis (1969) described the design of the FLEX machine, a flexible, extensible programming language developed in collaboration with Ed Cheadle. Kay dreamed of a device called the Dynabook, a portable electronic device the size of a three-ring notebook with a touch-sensitive liquid crystal screen and a keyboard - precursor to the Apple iPad.

Along with other Utah graduates, Kay's early career was spent as a founding computer science researcher at Xerox PARC. At PARC, Kay was involved in the design of Alto, often called the first personal computer. More significantly, Kay invented Smalltalk, the first object-oriented programming language, for which he received the prestigious Turing Award in 2003. After leaving Xerox, Kay held research positions at Atari, Apple Inc., Hewlett-Packard and Disney before starting Viewpoints Research Institute, a nonprofit organization dedicated to supporting educational media for children.

In January 1992, students Michael Moore and Richard Nash developed the first internet chess server and hosted it at lark.utah.edu for people to access through telnet. [5] The server moved in July to Carnegie Mellon University and Daniel Sleator later took over management.

Recent history

The School of Computing is also home to the Entertainment Arts and Entertainment (EAE) Program, which is the result of interdisciplinary collaboration between the College of Engineering at the University of Utah and the University of Utah College of Fine Arts. In 2014, the EAE Program was ranked second for its undergraduate program [6] and fourth for its graduate program [7] by the Princeton Review.

The School of Computing is also affiliated with the Scientific Computing and Imaging Institute, which focuses on research in scientific visualization, scientific computing, and medical image analysis. The institute currently has over 200 faculty and staff, most of which are from the School of Computing or Bioengineering departments. [8]

Notable people

Given its long history and affiliation with the development of computer science as a field, the School has been home to a number of respected scientists, entrepreneurs, and educators.

Notable alumni

Notable faculty

Related Research Articles

<span class="mw-page-title-main">Scanline rendering</span> 3D computer graphics image rendering method

Scanline rendering is an algorithm for visible surface determination, in 3D computer graphics, that works on a row-by-row basis rather than a polygon-by-polygon or pixel-by-pixel basis. All of the polygons to be rendered are first sorted by the top y coordinate at which they first appear, then each row or scan line of the image is computed using the intersection of a scanline with the polygons on the front of the sorted list, while the sorted list is updated to discard no-longer-visible polygons as the active scan line is advanced down the picture.

<span class="mw-page-title-main">Gouraud shading</span> Interpolation method in computer graphics

Gouraud shading, named after Henri Gouraud, is an interpolation method used in computer graphics to produce continuous shading of surfaces represented by polygon meshes. In practice, Gouraud shading is most often used to achieve continuous lighting on triangle meshes by computing the lighting at the corners of each triangle and linearly interpolating the resulting colours for each pixel covered by the triangle. Gouraud first published the technique in 1971.

<span class="mw-page-title-main">Ivan Sutherland</span> American computer scientist and Internet pioneer

Ivan Edward Sutherland is an American computer scientist and Internet pioneer, widely regarded as a pioneer of computer graphics. His early work in computer graphics as well as his teaching with David C. Evans in that subject at the University of Utah in the 1970s was pioneering in the field. Sutherland, Evans, and their students from that era developed several foundations of modern computer graphics. He received the Turing Award from the Association for Computing Machinery in 1988 for the invention of the Sketchpad, an early predecessor to the sort of graphical user interface that has become ubiquitous in personal computers. He is a member of the National Academy of Engineering, as well as the National Academy of Sciences among many other major awards. In 2012, he was awarded the Kyoto Prize in Advanced Technology for "pioneering achievements in the development of computer graphics and interactive interfaces".

<span class="mw-page-title-main">Phong shading</span> Interpolation technique for surface shading

In 3D computer graphics, Phong shading, Phong interpolation, or normal-vector interpolation shading is an interpolation technique for surface shading invented by computer graphics pioneer Bui Tuong Phong. Phong shading interpolates surface normals across rasterized polygons and computes pixel colors based on the interpolated normals and a reflection model. Phong shading may also refer to the specific combination of Phong interpolation and the Phong reflection model.

<span class="mw-page-title-main">John Warnock</span> American computer scientist, inventor and technology entrepreneur

John Edward Warnock is an American computer scientist, inventor and technology entrepreneur best known for co-founding Adobe Systems Inc., the graphics and publishing software company, with Charles Geschke in 1982. Warnock was President of Adobe for his first two years and chairman and CEO for his remaining sixteen years at the company. Although he retired as CEO in 2001, he continued to co-chair the Adobe Board of Directors with Geschke until 2017. Warnock has pioneered the development of graphics, publishing, Web and electronic document technologies that have revolutionized the field of publishing and visual communications.

<span class="mw-page-title-main">Shading</span> Depicting depth through varying levels of darkness

Shading refers to the depiction of depth perception in 3D models or illustrations by varying the level of darkness. Shading tries to approximate local behavior of light on the object's surface and is not to be confused with techniques of adding shadows, such as shadow mapping or shadow volumes, which fall under global behavior of light.

Henri Gouraud is a French computer scientist. He is the inventor of Gouraud shading used in computer graphics. He is the great-nephew of general Henri Gouraud.

Martin Edward Newell is a British-born computer scientist specializing in computer graphics who is perhaps best known as the creator of the Utah teapot computer model.

<span class="mw-page-title-main">Robert Taylor (computer scientist)</span> American computer scientist

Robert William Taylor, known as Bob Taylor, was an American Internet pioneer, who led teams that made major contributions to the personal computer, and other related technologies. He was director of ARPA's Information Processing Techniques Office from 1965 through 1969, founder and later manager of Xerox PARC's Computer Science Laboratory from 1970 through 1983, and founder and manager of Digital Equipment Corporation's Systems Research Center until 1996.

David Cannon Evans was the founder of the computer science department at the University of Utah and co-founder of Evans & Sutherland, a pioneering firm in computer graphics hardware.

<span class="mw-page-title-main">Robert S. Barton</span>

Robert Stanley "Bob" Barton was the chief architect of the Burroughs B5000 and other computers such as the B1700, a co-inventor of dataflow architecture, and an influential professor at the University of Utah.

Bui Tuong Phong was a Vietnamese-born computer graphics researcher and pioneer. He invented the widely used Phong shading algorithm and Phong reflection model.

Frederic Ira Parke is an American computer graphics researcher and academic. He did early work on animated computer renderings of human faces.

Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity. Graphics artists can choose from a variety of light sources, models, shading techniques, and effects to suit the needs of each application.

<span class="mw-page-title-main">Computer graphics (computer science)</span> Sub-field of computer science

Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to the study of three-dimensional computer graphics, it also encompasses two-dimensional graphics and image processing.

<span class="mw-page-title-main">Computer graphics</span> Graphics created using computers

Computer graphics deals with generating images and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as computer generated imagery (CGI). The non-artistic aspects of computer graphics are the subject of computer science research.

<span class="mw-page-title-main">University of Utah College of Engineering</span> John and Marcia Price College of Engineering in Utah, U.S.

The John and Marcia Price College of Engineering at the University of Utah is an academic college of the University of Utah in Salt Lake City, Utah. The college offers undergraduate and graduate degrees in engineering and computer science.

Amy Ashurst Gooch is a computer scientist known for her contributions in non-photorealistic rendering. She is currently the Chief Operations Officer at ViSOAR LLC, a data visualization research spin-off software company from the Scientific Computing and Imaging Institute. She is also an adjunct professor of computer science at Texas A&M University. Her current research is part of an interdisciplinary effort involving computer graphics, perceptual psychology, and computational vision. She is interested in better understanding the spatial information potentially available in CG imagery, determining what spatial cues are actually used when CG imagery is viewed, and using this information to create improved rendering algorithms and visualizations.

<i>A Computer Animated Hand</i> 1972 American film

A Computer Animated Hand is the title of a 1972 American computer-animated short film produced by Edwin Catmull and Fred Parke. Produced during Catmull's tenure at the University of Utah, the short was created for a graduate course project. After creating a model of his left hand, 350 triangles and polygons were drawn in ink on its surface. The model was digitized from the data and laboriously animated in a three-dimensional animation program that Catmull wrote.

References

  1. "Kahlert School of Computing – School of Computing at The University of Utah". www.cs.utah.edu. Retrieved April 15, 2023.
  2. "History of the School of Computing". University of Utah School of Computing. Retrieved March 12, 2014.
  3. Leiner, Barry M.; Robert E. Kahn; Jon Postel. "A Brief History of the Internet". Internet Society . Retrieved May 18, 2009.
  4. Piper, Matthew (December 3, 2016). "Whatever happened to the ubiquitous digital 'Utah teapot'?". The Salt Lake Tribune. The Salt Lake Tribune. Retrieved January 19, 2017.
  5. Harasim, Linda (1997). Learning Networks: A Field Guide to Teaching and Learning Online (3. print. ed.). Cambridge, Massachusetts: MIT Press. pp.  299. ISBN   9780262082365.
  6. "Top Undergraduate Schools for Video Game Design". Princeton Review. Retrieved April 2, 2014.
  7. "Top Graduate Schools for Video Game Design". Princeton Review. Retrieved April 2, 2014.
  8. "Scientific Computing and Imaging Institute Overview". University of Utah. Retrieved March 12, 2014.
  9. Lindstrom, G. (1986). "Elliott I. Organick (1925–1985)". Communications of the ACM. ACM. 29 (3): 231. doi: 10.1145/5666.6325 . S2CID   46437633.