Vanadium bromoperoxidase

Last updated
Bromoperoxidase/chloroperoxidase, Vanadium
Identifiers
SymbolBr/Cl_peroxidase
CATH 1qhb
SCOP2 1qhb / SCOPe / SUPFAM
CDD cd03398
Active site of the enzyme vanadium bromoperoxidase, which produces most of the earth's organobromine compounds. VBrPOactsite.png
Active site of the enzyme vanadium bromoperoxidase, which produces most of the earth's organobromine compounds.

Vanadium bromoperoxidases are a kind of enzymes called haloperoxidases. Its primary function is to remove hydrogen peroxide which is produced during photosynthesis from in or around the cell. By producing hypobromous acid (HOBr) a secondary reaction with dissolved organic matter, what results is the bromination of organic compounds that are associated with the defense of the organism. These enzymes produce the bulk of natural organobromine compounds in the world.

Contents

Vanadium bromoperoxidases are one of the few classes of enzymes that requires vanadium. The active site features a vanadium oxide center attached to the protein via one histidine side chain and a collection of hydrogen bonds to the oxide ligands. [1]

Occurrence and function

Vanadium bromoperoxidases have been found in bacteria, fungi, marine macro algae (seaweeds), and marine microalgae (diatoms) which produce brominated organic compounds. [2] It has not been definitively identified as the bromoperoxidase of higher eukaryotes, such as murex snails, which have a very stable and specific bromoperoxidase, but perhaps not a vanadium dependent one. [3] While the purpose of the bromoperoxidase is still unknown, the leading theories include that it’s a way of regulating hydrogen peroxide produced by photosynthesis and/or as a self-defense mechanism by producing hypobromous acid which prevents the growth of bacteria. [4] [5]

The enzymes catalyse the oxidation of bromide (0.0067% of sea water) by hydrogen peroxide. The resulting electrophilic bromonium cation (Br+) attacks hydrocarbons (symbolized as R-H in the following equation):

R-H + Br + H2O2 → R-Br + H2O + OH

The bromination acts on a variety of dissolved organic matter and increasingly bromination leads to the formation of bromoform. [6] The vanadium bromoperoxidases produce an estimated 1–2 million tons of bromoform and 56,000 tons of bromomethane annually. [7] Partially in the polar regions, which has high blooms of microalgae in the spring, these compounds have the potential to enter the troposphere and lower stratosphere. [8] [9] Through photolysis, brominated methanes produce a bromine radical (Br.) that can lead to ozone depletion. [10] Most of the earth's natural organobromine compounds arise by the action of this enzyme.

Related Research Articles

<span class="mw-page-title-main">Bromine</span> Chemical element, symbol Br and atomic number 35

Bromine is a chemical element; it has symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from the Ancient Greek βρῶμος (bromos) meaning "stench", referring to its sharp and pungent smell.

<span class="mw-page-title-main">Vanadium</span> Chemical element, symbol V and atomic number 23

Vanadium is a chemical element; it has symbol V and atomic number 23. It is a hard, silvery-grey, malleable transition metal. The elemental metal is rarely found in nature, but once isolated artificially, the formation of an oxide layer (passivation) somewhat stabilizes the free metal against further oxidation.

<span class="mw-page-title-main">Haloalkane</span> Group of chemical compounds derived from alkanes containing one or more halogens

The haloalkanes are alkanes containing one or more halogen substituents. They are a subset of the general class of halocarbons, although the distinction is not often made. Haloalkanes are widely used commercially. They are used as flame retardants, fire extinguishants, refrigerants, propellants, solvents, and pharmaceuticals. Subsequent to the widespread use in commerce, many halocarbons have also been shown to be serious pollutants and toxins. For example, the chlorofluorocarbons have been shown to lead to ozone depletion. Methyl bromide is a controversial fumigant. Only haloalkanes that contain chlorine, bromine, and iodine are a threat to the ozone layer, but fluorinated volatile haloalkanes in theory may have activity as greenhouse gases. Methyl iodide, a naturally occurring substance, however, does not have ozone-depleting properties and the United States Environmental Protection Agency has designated the compound a non-ozone layer depleter. For more information, see Halomethane. Haloalkane or alkyl halides are the compounds which have the general formula "RX" where R is an alkyl or substituted alkyl group and X is a halogen.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens. Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. The haloarene are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

<span class="mw-page-title-main">Hydrogen bromide</span> Chemical compound

Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C. Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.

A bromide ion is the negatively charged form (Br) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. Bromides have many practical roles, being found in anticonvulsants, flame-retardant materials, and cell stains. Although uncommon, chronic toxicity from bromide can result in bromism, a syndrome with multiple neurological symptoms. Bromide toxicity can also cause a type of skin eruption, see potassium bromide. The bromide ion has an ionic radius of 196 pm.

<span class="mw-page-title-main">BCDMH</span> Chemical compound

1-Bromo-3-chloro-5,5-dimethylhydantoin is a chemical structurally related to hydantoin. It is a white crystalline compound with a slight bromine and acetone odor and is insoluble in water, but soluble in acetone.

<span class="mw-page-title-main">Hypobromous acid</span> Chemical compound

Hypobromous acid is a weak, unstable acid with chemical formula of HOBr. It is mainly produced and handled in an aqueous solution. It is generated both biologically and commercially as a disinfectant. Salts of hypobromite are rarely isolated as solids.

<span class="mw-page-title-main">Hypobromite</span> Ion, and compounds containing the ion

The hypobromite ion, also called alkaline bromine water, is BrO. Bromine is in the +1 oxidation state. The Br–O bond length is 1.82 Å. Hypobromite is the bromine compound analogous to hypochlorites found in common bleaches, and in immune cells. In many ways, hypobromite functions in the same manner as hypochlorite, and is also used as a germicide and antiparasitic in both industrial applications, and in the immune system.

<span class="mw-page-title-main">Vanadium compounds</span>

Vanadium compounds are compounds formed by the element vanadium (V). The chemistry of vanadium is noteworthy for the accessibility of the four adjacent oxidation states 2–5, whereas the chemistry of the other group 5 elements, niobium and tantalum, are somewhat more limited to the +5 oxidation state. In aqueous solution, vanadium forms metal aquo complexes of which the colours are lilac [V(H2O)6]2+, green [V(H2O)6]3+, blue [VO(H2O)5]2+, yellow-orange oxides [VO(H2O)5]3+, the formula for which depends on pH. Vanadium(II) compounds are reducing agents, and vanadium(V) compounds are oxidizing agents. Vanadium(IV) compounds often exist as vanadyl derivatives, which contain the VO2+ center.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

Chloride peroxidase (EC 1.11.1.10) is a family of enzymes that catalyzes the chlorination of organic compounds. This enzyme combines the inorganic substrates chloride and hydrogen peroxide to produce the equivalent of Cl+, which replaces a proton in hydrocarbon substrate:

<span class="mw-page-title-main">Iodine oxide</span> Class of chemical compounds

Iodine oxides are chemical compounds of oxygen and iodine. Iodine has only two stable oxides which are isolatable in bulk, iodine tetroxide and iodine pentoxide, but a number of other oxides are formed in trace quantities or have been hypothesized to exist. The chemistry of these compounds is complicated with only a few having been well characterized. Many have been detected in the atmosphere and are believed to be particularly important in the marine boundary layer.

<span class="mw-page-title-main">Bromous acid</span> Chemical compound

Bromous acid is the inorganic compound with the formula of HBrO2. It is an unstable compound, although salts of its conjugate base – bromites – have been isolated. In acidic solution, bromites decompose to bromine.

Haloperoxidases are peroxidases that are able to mediate the oxidation of halides by hydrogen peroxide. Both halides and hydrogen peroxide are widely available in the environment.

Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.

<span class="mw-page-title-main">Bromide peroxidase</span> Family of enzymes

Bromide peroxidase (EC 1.11.1.18, bromoperoxidase, haloperoxidase (ambiguous), eosinophil peroxidase) is a family of enzymes with systematic name bromide:hydrogen-peroxide oxidoreductase. These enzymes catalyse the following chemical reaction:

<span class="mw-page-title-main">Vincent L. Pecoraro</span> American chemist

Vincent L. Pecoraro, professor at the University of Michigan, is a researcher in bioinorganic chemistry and inorganic chemistry. He is a specialist in the chemistry and biochemistry of manganese, vanadium, and metallacrown chemistry. He is a fellow of the American Association for the Advancement of Science

A large fraction of the chemical elements that occur naturally on the Earth's surface are essential to the structure and metabolism of living things. Four of these elements are essential to every living thing and collectively make up 99% of the mass of protoplasm. Phosphorus and sulfur are also common essential elements, essential to the structure of nucleic acids and amino acids, respectively. Chlorine, potassium, magnesium, calcium and phosphorus have important roles due to their ready ionization and utility in regulating membrane activity and osmotic potential. The remaining elements found in living things are primarily metals that play a role in determining protein structure. Examples include iron, essential to hemoglobin; and magnesium, essential to chlorophyll. Some elements are essential only to certain taxonomic groups of organisms, particularly the prokaryotes. For instance, the lanthanide series rare earths are essential for methanogens. As shown in the following table, there is strong evidence that 19 of the elements are essential to all living things, and another 17 are essential to some taxonomic groups. Of these 17, most have not been extensively studied, and their biological importance may be greater than currently supposed.

References

  1. Butler A, Carter-Franklin JN (February 2004). "The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products". Natural Product Reports. 21 (1): 180–8. doi:10.1039/b302337k. PMID   15039842.
  2. Moore RM, Webb M, Tokarczyk R, Wever R (15 September 1996). "Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures". Journal of Geophysical Research: Oceans. 101 (C9): 20899–20908. Bibcode:1996JGR...10120899M. doi:10.1029/96JC01248.
  3. Winter, J.M.; Moore, B.S. (July 2009). "Exploring the chemistry and biology of vanadium-dependent haloperoxidases". The Journal of Biological Chemistry. 284 (28): 18577–18581. doi: 10.1074/jbc.R109.001602 . PMC   2707250 . PMID   19363038.
  4. Gribble, Gordon W. (2009-12-17). Naturally occurring organohalogen compounds : A comprehensive update. Springer-Verlag/Wein. Bibcode:2010nooc.book.....G. ISBN   978-3-211-99322-4.
  5. Renirie R, Dewilde A, Pierlot C, Wever R, Hober D, Aubry JM (July 2008). "Bactericidal and virucidal activity of the alkalophilic P395D/L241V/T343A mutant of vanadium chloroperoxidase". Journal of Applied Microbiology. 105 (1): 264–270. doi: 10.1111/j.1365-2672.2008.03742.x . PMID   18266697.
  6. Butler, A.; Sandy, M. (August 2009). "Mechanistic considerations of halogenating enzymes". Nature. 460 (7257): 848–854. Bibcode:2009Natur.460..848B. doi:10.1038/nature08303. PMID   19675645. S2CID   4344990.
  7. Gribble, G.W. (1999). "The diversity of naturally occurring organobromine compounds". Chemical Society Reviews. 28 (5): 335–346. doi:10.1039/a900201d.
  8. Wever, R.; van der Horst, M.A. (September 2013). "The role of vanadium haloperoxidases in the formation of volatile brominated compounds and their impact on the environment" (PDF). Dalton Transactions. 42 (33): 11778–11786. doi:10.1039/c3dt50525a. PMID   23657250.
  9. Hill, V.L.; Manley, S.L. (May 2009). "Release of reactive bromine and iodine from diatoms and its possible role in halogen transfer in polar and tropical oceans". Limnology and Oceanography. 54 (3): 812–822. Bibcode:2009LimOc..54..812H. doi:10.4319/lo.2009.54.3.0812.
  10. Saiz-Lopez, A.; von Glasow, R. (October 2012). "Reactive halogen chemistry in the troposphere". Chemical Society Reviews. 41 (19): 6448–6472. doi:10.1039/c2cs35208g. PMID   22940700.