Zero ASIC

Last updated

Zero ASIC Corporation
FormerlyAdapteva, Inc.
Industry Semiconductor industry
FoundedMarch 2008
FounderAndreas Olofsson
Headquarters,
US
Key people
Andreas Olofsson, CEO
Products Central processing units
OwnerPrivately funded
Website zeroasic.com

Zero ASIC Corporation, formerly Adapteva, Inc., is a fabless semiconductor company focusing on low power many core microprocessor design. The company was the second company to announce a design with 1,000 specialized processing cores on a single integrated circuit. [1] [2]

Contents

Adapteva was founded in 2008 with the goal of bringing a ten times advancement in floating-point performance per watt for the mobile device market. Products are based on its Epiphany multi-core multiple instruction, multiple data (MIMD) architecture and its Parallella Kickstarter project promoting "a supercomputer for everyone" in September 2012. The company name is a combination of "adapt" and the Hebrew word "Teva" meaning nature.

History

Adapteva was founded in March 2008, by Andreas Olofsson. The company was founded with the goal of bringing a 10× advancement in floating-point processing energy efficiency for the mobile device market. In May 2009, Olofsson had a prototype of a new type of massively parallel multi-core computer architecture. The initial prototype was implemented in 65 nm and had 16 independent microprocessor cores. The initial prototypes enabled Adapteva to secure US$1.5 million in series-A funding from BittWare, a company from Concord, New Hampshire, in October 2009. [3]

Adapteva's first commercial chip product started sampling to customers in early May 2011 and they soon thereafter announced the capability to put up to 4,096 cores on a single chip.

The Epiphany III, was announced in October 2011 using 28 nm and 65 nm manufacturing processes.

Products

Adapteva's main product family is the Epiphany scalable multi-core MIMD architecture. The Epiphany architecture could accommodate chips with up to 4,096 RISC out-of-order microprocessors, all sharing a single 32-bit flat memory space. Each RISC processor in the Epiphany architecture is superscalar with 64× 32-bit unified register file (integer or single-precision) microprocessor operating up to 1  GHz and capable of 2  GFLOPS (single-precision). Epiphany's RISC processors use a custom instruction set architecture (ISA) optimised for single-precision floating-point, [4] but are programmable in high level ANSI C using a standard GNU-GCC tool chain. Each RISC processor (in current implementations; not fixed in the architecture) has 32  KB of local memory. Code (possibly duplicated in each core) and stack space should be in that local memory; in addition (most) temporary data should fit there for full speed. Data can also be used from other processor cores local memory at a speed penalty, or off-chip RAM with much larger speed penalty.

The memory architecture does not employ explicit hierarchy of hardware caches, similar to the Sony/Toshiba/IBM Cell processor, but with the additional benefit of off-chip and inter-core loads and stores being supported (which simplifies porting software to the architecture). It is a hardware implementation of partitioned global address space.[ citation needed ]

This eliminated the need for complex cache coherency hardware, which places a practical limit on the number of cores in a traditional multicore system. The design allows the programmer to leverage greater foreknowledge of independent data access patterns to avoid the runtime cost of figuring this out. All processor nodes are connected through a network on chip, allowing efficient message passing. [5]

Scalability

The architecture is designed to scale almost indefinitely, with 4 e-links allowing multiple chips to be combined in a grid topology, allowing for systems with thousands of cores.

Multi-core coprocessors

16-core Adapteva Epiphany chip, E16G301, from Parallella single-board computer Adapteva Parallella DK02 - Epiphany (15455181926).png
16-core Adapteva Epiphany chip, E16G301, from Parallella single-board computer

On August 19, 2012, Adapteva posted some specifications and information about Epiphany multi-core coprocessors. [6]

Technical info for   E16G301 [7]   E64G401 [8]
Cores1664
Core MHz1000800
Core GFLOPS21.6
"Sum GHz"1651.2
Sum GFLOPS32102
mm²8.968.2
nm6528
W def.0.91.4
W max.22

In September 2012, a 16-core version, the Epiphany-III (E16G301), was produced using 65 nm [9] (11.5 mm2, 500 MHz chip [10] ) and engineering samples of 64-core Epiphany-IV (E64G401) were produced using 28 nm GlobalFoundries process (800 MHz). [11]

The primary markets for the Epiphany multi-core architecture include:

Parallella project

Parallella single-board computer with 16-core Epiphany chip and Zynq-7010 FPGA Adapteva Parallella DK02 - Top (15478282925).png
Parallella single-board computer with 16-core Epiphany chip and Zynq-7010 FPGA

In September 2012, Adapteva started project Parallella on Kickstarter, which was marketed as "A Supercomputer for everyone." Architecture reference manuals for the platform were published as part of the campaign to attract attention to the project. [12] The US$750,000 funding goal was reached in a month, with a minimum contribution of US$99 entitling backers to obtain one device; although the initial deadline was set for May 2013, the first single-board computers with 16-core Epiphany chip were finally shipped in December 2013. [13]

Size of board is planned to be 86 mm × 53 mm (3.4 in × 2.1 in). [14] [15] [16]

The Kickstarter campaign raised US$898,921. [17] [18] Raising US$3 million goal was unsuccessful, so no 64-core version of Parallella will be mass-produced. [19] Kickstarter users having donated more than US$750 will get "parallella-64" variant with 64-core coprocessor (made from initial prototype manufacturing with 50 chips yield per wafer). [20]

Parallella-16 Micro ServerParallella-16 Desktop ComputerParallella-16 Embedded Platform
UsageEthernet connected headless serverA personal computerLeading edge embedded systems
Processor Dual-core 32-bit ARM Cortex-A9 with NEON at 1 GHz (part of Zynq XC7Z010 chip by Xilinx) Dual-core 32-bit ARM Cortex-A9 with NEON at 1 GHz (part of Zynq XC7Z020 chip by Xilinx)
Coprocessor16-core Epiphany III multi-core accelerator (E16)
Memory1 GB DDR3L RAM
Ethernet 10/100/1000
USB  USB 2.0 (USB 2.0 HS and USB OTG)
Display HDMI
Storage16 GB microSD
Expansion2 eLinks + 24 GPIO 2 eLinks + 24 GPIO
FPGA 28K programmable logic cells
80 programmable DSP slices
80K programmable logic cells
220 programmable DSP slices
Weight36 g (1.3 oz)38 g (1.3 oz)
Size3.5 in × 2.1 in × 0.625 in (88.9 mm × 53.3 mm × 15.9 mm)
SKUP1600-DK-xxP1601-DK-xxP1602-DK-xx
HTS Code8471.41.0150
Power USB-powered (2.5 W) or 5 V DC (≈5 W)

Epiphany V

By 2016, the firm had taped out a 1024-core 64-bit variant of their Epiphany architecture that featured: larger local stores (64 KB), 64-bit addressing, double-precision floating-point arithmetic or SIMD single-precision, and 64-bit integer instructions, implemented in the 16 nm process node. [21] This design included instruction set enhancements aimed at deep-learning and cryptography applications. In July 2017, Adapteva's founder became a DARPA MTO program manager [22] and announced that the Epiphany V was "unlikely" to become available as a commercial product. [23]

Performance

The 16-core Parallella achieves roughly 5.0 GFLOPS/W, and the 64-core Epiphany-IV made with 28 nm estimated as 50 GFLOPS/W (single-precision), [24] and 32-board system based on them achieves 15 GFLOPS/W. [25] For comparison, top GPUs from AMD and Nvidia reached 10 GFLOPS/W for single-precision in 2009–2011 timeframe. [26]

See also

Related Research Articles

<span class="mw-page-title-main">DEC Alpha</span> 64-bit RISC instruction set architecture

Alpha is a 64-bit reduced instruction set computer (RISC) instruction set architecture (ISA) developed by Digital Equipment Corporation (DEC). Alpha was designed to replace 32-bit VAX complex instruction set computers (CISC) and to be a highly competitive RISC processor for Unix workstations and similar markets.

<span class="mw-page-title-main">PA-RISC</span> Instruction set architecture by Hewlett-Packard

Precision Architecture RISC (PA-RISC) or Hewlett Packard Precision Architecture, is a general purpose computer instruction set architecture (ISA) developed by Hewlett-Packard from the 1980s until the 2000s.

<span class="mw-page-title-main">SPARC</span> RISC instruction set architecture

SPARC is a reduced instruction set computer (RISC) instruction set architecture originally developed by Sun Microsystems. Its design was strongly influenced by the experimental Berkeley RISC system developed in the early 1980s. First developed in 1986 and released in 1987, SPARC was one of the most successful early commercial RISC systems, and its success led to the introduction of similar RISC designs from many vendors through the 1980s and 1990s.

SuperH is a 32-bit reduced instruction set computing (RISC) instruction set architecture (ISA) developed by Hitachi and currently produced by Renesas. It is implemented by microcontrollers and microprocessors for embedded systems.

The Intel i860 is a RISC microprocessor design introduced by Intel in 1989. It is one of Intel's first attempts at an entirely new, high-end instruction set architecture since the failed Intel iAPX 432 from the beginning of the 1980s. It was the world's first million-transistor chip. It was released with considerable fanfare, slightly obscuring the earlier Intel i960, which was successful in some niches of embedded systems. The i860 never achieved commercial success and the project was terminated in the mid-1990s.

<span class="mw-page-title-main">PowerPC 970</span>

The PowerPC 970, PowerPC 970FX, and PowerPC 970MP are 64-bit PowerPC processors from IBM introduced in 2002. When used in PowerPC-based Macintosh computers, Apple referred to them as the PowerPC G5.

Cell is a 64-bit multi-core microprocessor microarchitecture that combines a general-purpose PowerPC core of modest performance with streamlined coprocessing elements which greatly accelerate multimedia and vector processing applications, as well as many other forms of dedicated computation.

<span class="mw-page-title-main">POWER7</span> 2010 family of multi-core microprocessors by IBM

POWER7 is a family of superscalar multi-core microprocessors based on the Power ISA 2.06 instruction set architecture released in 2010 that succeeded the POWER6 and POWER6+. POWER7 was developed by IBM at several sites including IBM's Rochester, MN; Austin, TX; Essex Junction, VT; T. J. Watson Research Center, NY; Bromont, QC and IBM Deutschland Research & Development GmbH, Böblingen, Germany laboratories. IBM announced servers based on POWER7 on 8 February 2010.

ClearSpeed Technology Ltd was a semiconductor company, formed in 2002 to develop enhanced SIMD processors for use in high-performance computing and embedded systems. Based in Bristol, UK, the company has been selling its processors since 2005. Its current 192-core CSX700 processor was released in 2008, but a lack of sales has forced the company to downsize and it has since delisted from the London stock exchange.

In computing, performance per watt is a measure of the energy efficiency of a particular computer architecture or computer hardware. Literally, it measures the rate of computation that can be delivered by a computer for every watt of power consumed. This rate is typically measured by performance on the LINPACK benchmark when trying to compare between computing systems: an example using this is the Green500 list of supercomputers. Performance per watt has been suggested to be a more sustainable measure of computing than Moore’s Law.

The SPARC64 V (Zeus) is a SPARC V9 microprocessor designed by Fujitsu. The SPARC64 V was the basis for a series of successive processors designed for servers, and later, supercomputers.

<span class="mw-page-title-main">Xeon Phi</span> Series of x86 manycore processors from Intel

Xeon Phi was a series of x86 manycore processors designed and made by Intel. It was intended for use in supercomputers, servers, and high-end workstations. Its architecture allowed use of standard programming languages and application programming interfaces (APIs) such as OpenMP.

Sunway, or Shenwei,, is a series of computer microprocessors, developed by Jiangnan Computing Lab (江南计算技术研究所) in Wuxi, China. It uses a reduced instruction set computer (RISC) architecture, but details are still sparse.

<span class="mw-page-title-main">MCST</span> Russian computer company

MCST is a Russian microprocessor company that was set up in 1992. Different types of processors made by MCST were used in personal computers, servers and computing systems. MCST develops microprocessors based on two different instruction set architecture (ISA): Elbrus and SPARC. MCST is a direct descendant of the Lebedev Institute of Precision Mechanics and Computer Engineering.

IBM POWER is a reduced instruction set computer (RISC) instruction set architecture (ISA) developed by IBM. The name is an acronym for Performance Optimization With Enhanced RISC.

IBM Power microprocessors are designed and sold by IBM for servers and supercomputers. The name "POWER" was originally presented as an acronym for "Performance Optimization With Enhanced RISC". The Power line of microprocessors has been used in IBM's RS/6000, AS/400, pSeries, iSeries, System p, System i, and Power Systems lines of servers and supercomputers. They have also been used in data storage devices and workstations by IBM and by other server manufacturers like Bull and Hitachi.

RISC-V is an open standard instruction set architecture (ISA) based on established reduced instruction set computer (RISC) principles. Unlike most other ISA designs, RISC-V is provided under royalty-free open-source licenses. Many companies are offering or have announced RISC-V hardware; open source operating systems with RISC-V support are available, and the instruction set is supported in several popular software toolchains.

The SW26010 is a 260-core manycore processor designed by the Shanghai Integrated Circuit Technology and Industry Promotion Center (Chinese: 上海集成电路技术与产业促进中心 ). It implements the Sunway architecture, a 64-bit reduced instruction set computing (RISC) architecture designed in China. The SW26010 has four clusters of 64 Compute-Processing Elements (CPEs) which are arranged in an eight-by-eight array. The CPEs support SIMD instructions and are capable of performing eight double-precision floating-point operations per cycle. Each cluster is accompanied by a more conventional general-purpose core called the Management Processing Element (MPE) that provides supervisory functions. Each cluster has its own dedicated DDR3 SDRAM controller and a memory bank with its own address space. The processor runs at a clock speed of 1.45 GHz.

Since 1985, many processors implementing some version of the MIPS architecture have been designed and used widely.

<span class="mw-page-title-main">VEGA Microprocessors</span> India’s first Indigenous 64-bit, Multi-core, Out-of-Order, Superscalar RISC-V Processor

VEGA Microprocessors are a portfolio of indigenous processors developed by C-DAC. The portfolio includes several 32-bit/64-bit Single/Multi-core Superscalar In-order/Out-of-Order high performance processors based on the RISC-V ISA. Also features India's first indigenous 64-bit, superscalar, Out-of-order processor which is the main highlight of this portfolio. The Centre for Development of Advanced Computing (C-DAC) is an autonomous Scientific Society, operating under the Ministry of Electronics and Information Technology (MeitY), Govt. of India. The Microprocessor Development Programme (MDP) was initiated and funded by MeitY with the mission objective to design and develop indigenously, a family of Microprocessors, related IPs and the complete ecosystem to enable fully indigenous product development that meets various requirements in the strategic, industrial and commercial sectors. As part of the project C-DAC has successfully developed the VEGA series of microprocessors in soft IP form, which include32-bit Single-core (In-order), 64-bit Single-core, 64-bit Dual-core (Out-of-order), and 64-bit Quad-core (Out-of-order). These high-performance processors are based on the open-source RISC-V Instruction Set Architecture. The tape out of some of these processor chips have also been planned.

References

  1. Clark, Don (May 3, 2011). "Startup Has Big Plans for Tiny Chip Technology". Wall Street Journal. Retrieved May 3, 2011.
  2. "IBM says Kilocore technology will outrun today's mobile processors". Tom's Hardware. 2006.
  3. "From RTL to GDSII in Just Six Weeks". EETimes (via Wayback Machine). 2010. Archived from the original on December 9, 2010. Retrieved October 26, 2010.
  4. "Epiphany Architecture Reference Manual". Archived from the original on October 9, 2012.
  5. "Startup Launches Manycore Floating Point Acceleration Technology". HPCWire. 2011. Retrieved May 3, 2011.
  6. "Epiphany Multicore IP. Example Configurations". August 19, 2012.
  7. Epiphany-III 16-core 65nm Microprocessor (E16G301) // admin (August 19, 2012)
  8. Epiphany-IV 64-core 28nm Microprocessor (E64G401) // admin (August 19, 2012)
  9. Silicon devices // Adapteva
  10. Linley Gwennap, Adapteva: More Flops, Less Watts. Epiphany Offers Floating-Point Accelerator for Mobile Processors. // Microprocessor Report, June 2011
  11. Michael Feldman, Adapteva Unveils 64-Core Chip // HPCWire
  12. Andreas Olofsson, Epiphany Documentation Release
  13. Update #46: First Parallella User Created Video
  14. Rick Merritt, Adapteva Kickstarts Hundred-Dollar Supercomputer // EETimes, September 27, 2012
  15. Parallella - Supercomputing for Everyone (slidecast). Adapteva founder & CEO Andreas Olofsson. September 28, 2012.
  16. Parallella: A Supercomputer For Everyone by Adapteva, Project page at Kickstarter
  17. Parallella: A Supercomputer For Everyone // Kickstarter project, by Adapteva
  18. Hiawatha Bray, Adapteva creates efficient, cheap microchip with help from Kickstarter. ‘Crowdfunding’ puts a tiny, fast computer closer to production // The Boston Globe, December 2, 2012
  19. Andrew Back, Introducing the $99 Linux Supercomputer Archived November 17, 2015, at the Wayback Machine , Linux.com, January 24, 2013: "pledges of $99 or more being rewarded with at least one board with a 16-core device. ... The 16-core Epiphany chip delivers 26 GFLOPS of performance and with the entire Parallella computer consuming only 5 watts"
  20. 64-core version of the Parallella board now offered! // Adapteva blog at Kickstarter, October 25, 2012: "The Epiphany-IV (64+2) core Parallella board will be offered for pledges above $750. ... the fact that we only get 50 dies per wafer for these initial prototype runs. We can't disclose wafer pricing and yields at 28nm,"
  21. "epiphany v announcement".
  22. Olofsson, Andreas (March 11, 2017). "Mr. Andreas Olofsson". DARPA. Archived from the original on March 11, 2017. Retrieved December 16, 2018.
  23. Olofsson, Andreas (July 9, 2017). "Adapteva Status Update". Adapteva Blog. Archived from the original on April 23, 2018. Retrieved December 16, 2018.
  24. Feldman, Michael (August 22, 2012). "Adapteva Unveils 64-Core Chip". HPCWire. Retrieved September 3, 2014.
  25. "Adapteva Reveals A-1 Supercomputing Platform at ISC14". HPCWire, press-release of Adapteva. June 23, 2014. Retrieved September 3, 2014.
  26. "CPU, GPU and MIC Hardware Characteristics over Time. Raw Compute Performance - Comparison of GFLOP/sec per Watt for single precision arithmetics. Higher is better". Karl Rupp. June 24, 2013. Retrieved September 3, 2014.

Further reading