Generalized beta distribution

Last updated

In probability and statistics, the generalized beta distribution [1] is a continuous probability distribution with four shape parameters (however it's customary to make explicit the scale parameter as a fifth parameter, while the location parameter is usually left implicit), including more than thirty named distributions as limiting or special cases. It has been used in the modeling of income distribution, stock returns, as well as in regression analysis. The exponential generalized beta (EGB) distribution follows directly from the GB and generalizes other common distributions.

Contents

Definition

A generalized beta random variable, Y, is defined by the following probability density function:

and zero otherwise. Here the parameters satisfy , and , , and positive. The function B(p,q) is the beta function. The parameter is the scale parameter and can thus be set to without loss of generality, but it is usually made explicit as in the function above (while the location parameter is usually left implicit and set to as in the function above).

GB distribution tree GBtree.jpg
GB distribution tree

Properties

Moments

It can be shown that the hth moment can be expressed as follows:

where denotes the hypergeometric series (which converges for all h if c<1, or for all h/a<q if c=1 ).

The generalized beta encompasses many distributions as limiting or special cases. These are depicted in the GB distribution tree shown above. Listed below are its three direct descendants, or sub-families.

Generalized beta of first kind (GB1)

The generalized beta of the first kind is defined by the following pdf:

for where , , and are positive. It is easily verified that

The moments of the GB1 are given by

The GB1 includes the beta of the first kind (B1), generalized gamma(GG), and Pareto as special cases:

Generalized beta of the second kind (GB2)

The GB2 is defined by the following pdf:

for and zero otherwise. One can verify that

The moments of the GB2 are given by

The GB2 is also known as the Generalized Beta Prime (Patil, Boswell, Ratnaparkhi (1984)), [2] the transformed beta (Venter, 1983), [3] the generalized F (Kalfleisch and Prentice, 1980), [4] and is a special case (μ≡0) of the Feller-Pareto (Arnold, 1983) [5] distribution. The GB2 nests common distributions such as the generalized gamma (GG), Burr type 3, Burr type 12, Dagum, lognormal, Weibull, gamma, Lomax, F statistic, Fisk or Rayleigh, chi-square, half-normal, half-Student's t, exponential, asymmetric log-Laplace, log-Laplace, power function, and the log-logistic. [6]

Beta

The beta family of distributions (B) is defined by: [1]

for and zero otherwise. Its relation to the GB is seen below:

The beta family includes the beta of the first and second kind [7] (B1 and B2, where the B2 is also referred to as the Beta prime), which correspond to c = 0 and c = 1, respectively. Setting , yields the standard two-parameter beta distribution.

Generalized Gamma

The generalized gamma distribution (GG) is a limiting case of the GB2. Its PDF is defined by: [8]

with the th moments given by

As noted earlier, the GB distribution family tree visually depicts the special and limiting cases (see McDonald and Xu (1995) ).

Pareto

The Pareto (PA) distribution is the following limiting case of the generalized gamma:

for and otherwise.

Power

The power (P) distribution is the following limiting case of the generalized gamma:

which is equivalent to the power function distribution for and .

Asymmetric Log-Laplace

The asymmetric log-Laplace distribution (also referred to as the double Pareto distribution [9] ) is defined by: [10]

where the th moments are given by

When , this is equivalent to the log-Laplace distribution.

Exponential generalized beta distribution

Letting (without location parameter), the random variable , with re-parametrization and , is distributed as an exponential generalized beta (EGB), with the following pdf:

for , and zero otherwise. The EGB includes generalizations of the Gompertz, Gumbel, extreme value type I, logistic, Burr-2, exponential, and normal distributions. The parameter is the location parameter of the EGB (while is the scale parameter of the GB), and is the scale parameter of the EGB (while is a shape parameter of the GB); The EGB has thus three shape parameters.

Included is a figure showing the relationship between the EGB and its special and limiting cases. [11]

The EGB family of distributions Egbtree.jpg
The EGB family of distributions

Moment generating function

Using similar notation as above, the moment-generating function of the EGB can be expressed as follows:

Multivariate generalized beta distribution

A multivariate generalized beta pdf extends the univariate distributions listed above. For variables , define parameter vectors by , , , and where each and is positive, and . The parameter is assumed to be positive, and define the function = for = .

The pdf of the multivariate generalized beta () may be written as follows:

where for and when = .

Like the univariate generalized beta distribution, the multivariate generalized beta includes several distributions in its family as special cases. By imposing certain constraints on the parameter vectors, the following distributions can be easily derived. [12]

Multivariate generalized beta of the first kind (MGB1)

When each is equal to 0, the MGB function simplifies to the multivariate generalized beta of the first kind (MGB1), which is defined by:

where .

Multivariate generalized beta of the second kind (MGB2)

In the case where each is equal to 1, the MGB simplifies to the multivariate generalized beta of the second kind (MGB2), with the pdf defined below:

when for all .

Multivariate generalized gamma

The multivariate generalized gamma (MGG) pdf can be derived from the MGB pdf by substituting = and taking the limit as , with Stirling's approximation for the gamma function, yielding the following function:

which is the product of independently but not necessarily identically distributed generalized gamma random variables.

Other multivariate distributions

Similar pdfs can be constructed for other variables in the family tree shown above, simply by placing an M in front of each pdf name and finding the appropriate limiting and special cases of the MGB as indicated by the constraints and limits of the univariate distribution. Additional multivariate pdfs in the literature include the Dirichlet distribution (standard form) given by , the multivariate inverted beta and inverted Dirichlet (Dirichlet type 2) distribution given by , and the multivariate Burr distribution given by .

Marginal density functions

The marginal density functions of the MGB1 and MGB2, respectively, are the generalized beta distributions of the first and second kind, and are given as follows:

Applications

The flexibility provided by the GB family is used in modeling the distribution of:

Applications involving members of the EGB family include: [1] [6]

Distribution of Income

The GB2 and several of its special and limiting cases have been widely used as models for the distribution of income. For some early examples see Thurow (1970), [13] Dagum (1977), [14] Singh and Maddala (1976), [15] and McDonald (1984). [6] Maximum likelihood estimations using individual, grouped, or top-coded data are easily performed with these distributions.

Measures of inequality, such as the Gini index (G), Pietra index (P), and Theil index (T) can be expressed in terms of the distributional parameters, as given by McDonald and Ransom (2008): [16]

Hazard Functions

The hazard function, h(s), where f(s) is a pdf and F(s) the corresponding cdf, is defined by

Hazard functions are useful in many applications, such as modeling unemployment duration, the failure time of products or life expectancy. Taking a specific example, if s denotes the length of life, then h(s) is the rate of death at age s, given that an individual has lived up to age s. The shape of the hazard function for human mortality data might appear as follows: decreasing mortality in the first few months of life, then a period of relatively constant mortality and finally an increasing probability of death at older ages.

Special cases of the generalized beta distribution offer more flexibility in modeling the shape of the hazard function, which can call for "∪" or "∩" shapes or strictly increasing (denoted by I}) or decreasing (denoted by D) lines. The generalized gamma is "∪"-shaped for a>1 and p<1/a, "∩"-shaped for a<1 and p>1/a, I-shaped for a>1 and p>1/a and D-shaped for a<1 and p>1/a. [17] This is summarized in the figure below. [18] [19]

Possible hazard function shapes using the generalized gamma Hazardshape.png
Possible hazard function shapes using the generalized gamma

Related Research Articles

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-square distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter and a scale parameter .
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.
<span class="mw-page-title-main">Beta function</span> Mathematical function

In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral

In Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function .

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

<span class="mw-page-title-main">Inverse-gamma distribution</span> Two-parameter family of continuous probability distributions

In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution.

<span class="mw-page-title-main">Beta prime distribution</span> Probability distribution

In probability theory and statistics, the beta prime distribution is an absolutely continuous probability distribution.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Normal-inverse-gamma distribution</span>

In probability theory and statistics, the normal-inverse-gamma distribution is a four-parameter family of multivariate continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and variance.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In computer networks, self-similarity is a feature of network data transfer dynamics. When modeling network data dynamics the traditional time series models, such as an autoregressive moving average model are not appropriate. This is because these models only provide a finite number of parameters in the model and thus interaction in a finite time window, but the network data usually have a long-range dependent temporal structure. A self-similar process is one way of modeling network data dynamics with such a long range correlation. This article defines and describes network data transfer dynamics in the context of a self-similar process. Properties of the process are shown and methods are given for graphing and estimating parameters modeling the self-similarity of network data.

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.

In statistics, the generalized Marcum Q-function of order is defined as

In physics, the Maxwell–Jüttner distribution is the distribution of speeds of particles in a hypothetical gas of relativistic particles. Similar to Maxwell's distribution, the Maxwell–Jüttner distribution considers a classical ideal gas where the particles are dilute and do not significantly interact with each other. The distinction from Maxwell's case is that effects of special relativity are taken into account. In the limit of low temperatures much less than , this distribution becomes identical to the Maxwell–Boltzmann distribution.

In statistics, the variance function is a smooth function which depicts the variance of a random quantity as a function of its mean. The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling. It is a main ingredient in the generalized linear model framework and a tool used in non-parametric regression, semiparametric regression and functional data analysis. In parametric modeling, variance functions take on a parametric form and explicitly describe the relationship between the variance and the mean of a random quantity. In a non-parametric setting, the variance function is assumed to be a smooth function.

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

In the field of mathematics known as complex analysis, the indicator function of an entire function indicates the rate of growth of the function in different directions.

References

  1. 1 2 3 McDonald, James B. & Xu, Yexiao J. (1995) "A generalization of the beta distribution with applications," Journal of Econometrics, 66(1–2), 133–152 doi : 10.1016/0304-4076(94)01612-4
  2. Patil, G.P., Boswell, M.T., and Ratnaparkhi, M.V., Dictionary and Classified Bibliography of Statistical Distributions in Scientific Work Series, editor G.P. Patil, Internal Co-operative Publishing House, Burtonsville, Maryland, 1984.
  3. Venter, G., Transformed beta and gamma distributions and aggregate losses, Proceedings of the Casualty Actuarial Society, 1983.
  4. Kalbfleisch, J.D. and R.L. Prentice, The Statistical Analysis of Failure Time Data, New York: J. Wiley, 1980
  5. Arnold, B.C., Pareto Distributions, Volume 5 in Statistical Distributions in Scientific Work Series, International Co-operative Publishing House, Burtonsville, Md. 1983.
  6. 1 2 3 McDonald, J.B. (1984) "Some generalized functions for the size distributions of income", Econometrica 52, 647–663.
  7. Stuart, A. and Ord, J.K. (1987): Kendall's Advanced Theory of Statistics, New York: Oxford University Press.
  8. Stacy, E.W. (1962). "A Generalization of the Gamma Distribution." Annals of Mathematical Statistics 33(3): 1187-1192. JSTOR   2237889
  9. Reed, W.J. (2001). "The Pareto, Zipf, and other power laws." Economics Letters 74: 15-19. doi : 10.1016/S0165-1765(01)00524-9
  10. Higbee, J.D., Jensen, J.E., and McDonald, J.B. (2019). "The asymmetric log-Laplace distribution as a limiting case of the generalized beta distribution."Statistics and Probability Letters 151: 73-78. doi : 10.1016/j.spl.2019.03.018
  11. McDonald, James B. & Kerman, Sean C. (2013) "Skewness-Kurtosis Bounds for EGB1, EGB2, and Special Cases," Forthcoming
  12. William M. Cockriel & James B. McDonald (2017): Two multivariate generalized beta families, Communications in Statistics - Theory and Methods, doi : 10.1080/03610926.2017.1400058
  13. Thurow, L.C. (1970) "Analyzing the American Income Distribution," Papers and Proceedings, American Economics Association, 60, 261-269
  14. Dagum, C. (1977) "A New Model for Personal Income Distribution: Specification and Estimation," Economie Applique'e, 30, 413-437
  15. Singh, S.K. and Maddala, G.S (1976) "A Function for the Size Distribution of Incomes," Econometrica, 44, 963-970
  16. McDonald, J.B. and Ransom, M. (2008) "The Generalized Beta Distribution as a Model for the Distribution of Income: Estimation of Related Measures of Inequality", Modeling the Distributions and Lorenz Curves, "Economic Studies in Inequality: Social Exclusion and Well-Being", Springer: New York editor Jacques Silber, 5, 147-166
  17. Glaser, Ronald E. (1980) "Bathtub and Related Failure Rate Characterizations," Journal of the American Statistical Association, 75(371), 667-672 doi : 10.1080/01621459.1980.10477530
  18. McDonald, James B. (1987) "A general methodology for determining distributional forms with applications in reliability," Journal of Statistical Planning and Inference, 16, 365-376 doi : 10.1016/0378-3758(87)90089-9
  19. McDonald, J.B. and Richards, D.O. (1987) "Hazard Functions and Generalized Beta Distributions", IEEE Transactions on Reliability, 36, 463-466

Bibliography