Glycidamide

Last updated
Glycidamide
Glycidamide Enantiomers.png
Names
Preferred IUPAC name
Oxiranecarboxamide
Other names
Glycidic acid amide
Oxirane-2-carboxamide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.024.694 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C3H5NO2/c4-3(5)2-1-6-2/h2H,1H2,(H2,4,5)
  • C1C(O1)C(=O)N
Properties
C3H5NO2
Molar mass 87.078 g·mol−1
Density 1.404 g/cm3 [1]
Melting point 32–34 °C (90–93 °F; 305–307 K)
Pharmacology
Pharmacokinetics:
5 hours
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Glycidamide is an organic compound with the formula H2NC(O)C2H3O. It is a colorless, oil. Structurally, it contains adjacent amides and epoxide functional groups. It is a bioactive, potentially toxic or even carcinogenic metabolite of acrylonitrile and acrylamide. [2] [3] It is a chiral molecule.

Contents

Structure and reactivity

Glycidamide is a reactive epoxide metabolite from acrylamide [4] [5] and can react with nucleophiles. This results in covalent binding of the electrophile. [6]

Glycidamide gives a positive response in the Ames/Salmonella mutagenicity assay, which indicates that it can cause mutations in the DNA. [4] However, "Epidemiologic studies of workers for possible health effects from exposures to acrylamide have not shown a consistent increase in cancer risk." [7]

Formation

Early studies showed that glycidamides can be synthesized by the action of hydrogen peroxide on acrylonitrile derivatives. [8]

More relevant to health concerns, glycidamide forms from acrylamide. The acrylamide is generated by pyrolysis of proteins rich in asparagine. Oxidation of acrylamide, catalyzed by the enzyme cytochrome P450 2E1 (CYP2E1) gives glycidamide. [9] Saturated fatty acids protect the acrylamide from forming glycidamide. When during food processing, oil is used that contains unsaturated fatty acids, the amount of glycidamide formed is much higher. [10]

Pathology

Reactions

Glycidamide reacts with DNA to form adducts. It is more reactive toward DNA than acrylamide. Several glycidamide-DNA adducts have been characterized. The main DNA adducts are N7-(2-carbamoyl-2-hydroxyethyl)-guanine (or N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (or N3-GA-Ade). [7] Glycidamide also reacts with haemoglobine (Hb) to form a cysteine adduct, S-(20hydroxy-2carboxyethyl)cysteine. [6] With this reaction, N-terminal valine adducts are also formed. [11]

Mechanism of action

According to a major review, acrylamide "is extensively metabolized, mostly by conjugation with glutathione but also by epoxidation to glycidamide (GA). Formation of GA is considered to represent the route underlying the genotoxicity and carcinogenicity of acrylamide. The reaction of glycidamide and glutathione represents a detoxification pathway." [12] [5] [13]

Glycidamide inhibits the sodium/potassium ATPase protein present in the plasma membrane of nerve cells. [14] Intracellular sodium increases and intracellular potassium decreases due to this inhibition. This causes depolarization of the nerve membrane. The depolarization triggers a reverse sodium/calcium exchange, which will cause calcium-mediated axon degeneration. [15]

Metabolism

The liver is a very active organ in the metabolism of xenobiotics. Substances in the liver modify the compounds to make them more soluble in water, in order to excrete them through bile and urine. In the case of acrylamide, this metabolic strategy result in a greater toxicity of the compound. [16] Whether this is the case for glycidamide remains unclear.

Glycidamide can be detoxified through diverse pathways such as the formation of glycidamide-glutathione conjugates. Both an enzymatic pathway via glutathione-S-transferase and a non-enzymatic pathway exist. These glycidamide-glutathione conjugates are further metabolized to mercapturic acids by various peptidases and transferases, such as gamma-glutamyl-transpeptidase, dipeptidase, and N-acetyltransferase. The mercapturic acids that can be formed are N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA), N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-cysteine (GAMA2), and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-cysteine (GAMA3) (Huang et al., 2011). These mercapturic acids are excreted through urine. [13]

Glycidamide can also be hydrolyzed to glyceramide both spontaneously or enzymatically by microsomal epoxide hydrolase. [13] This too can be excreted through urine. [6]

Animal studies

Mice and rats show mutations and DNA adducts consistent with those arising from glycidamide. [9] [17] [18] Another study found tumors in the mice bodies after treatment with glycidamide [19] A study by National Toxicology Program (2014) [20] provided evidence of carcinogenic activity of glycidamide in several species of rats and mice. For two years, rats and mice were exposed to varying doses of glycidamide in drinking water. In the rats and mice were several carcinogenic effects found, such as carcinomas, fibroadenomas and malignant mesotheliomas.

Related Research Articles

<span class="mw-page-title-main">Carcinogen</span> Substance, radionuclide, or radiation directly involved in causing cancer

A carcinogen is any substance, radionuclide, or radiation that promotes carcinogenesis. This may be due to the ability to damage the genome or to the disruption of cellular metabolic processes. Several radioactive substances are considered carcinogens, but their carcinogenic activity is attributed to the radiation, for example gamma rays and alpha particles, which they emit. Common examples of non-radioactive carcinogens are inhaled asbestos, certain dioxins, and tobacco smoke. Although the public generally associates carcinogenicity with synthetic chemicals, it is equally likely to arise from both natural and synthetic substances. Carcinogens are not necessarily immediately toxic; thus, their effect can be insidious.

Acrylamide (or acrylic amide) is an organic compound with the chemical formula CH2=CHC(O)NH2. It is a white odorless solid, soluble in water and several organic solvents. From the chemistry perspective, acrylamide is a vinyl-substituted primary amide (CONH2). It is produced industrially mainly as a precursor to polyacrylamides, which find many uses as water-soluble thickeners and flocculation agents.

Acrylonitrile is an organic compound with the formula CH2CHCN and the structure H2C=CH−C≡N. It is a colorless, volatile liquid although commercial samples can be yellow due to impurities. It has a pungent odor of garlic or onions. Its molecular structure consists of a vinyl group linked to a nitrile. It is an important monomer for the manufacture of useful plastics such as polyacrylonitrile. It is reactive and toxic at low doses. Acrylonitrile was first synthesized by the French chemist Charles Moureu (1863–1929) in 1893.

<span class="mw-page-title-main">Safrole</span> Chemical compound

Safrole is an organic compound with the formula CH2O2C6H3CH2CH=CH2. It is a colorless oily liquid, although impure samples can appear yellow. A member of the phenylpropanoid family of natural products, it is found in sassafras plants, among others. Small amounts are found in a wide variety of plants, where it functions as a natural antifeedant. Ocotea pretiosa, which grows in Brazil, and Sassafras albidum, which grows in eastern North America, are the main natural sources of safrole. It has a characteristic "sweet-shop" aroma.

Genotoxicity is the property of chemical agents that damage the genetic information within a cell causing mutations, which may lead to cancer. While genotoxicity is often confused with mutagenicity, all mutagens are genotoxic, but some genotoxic substances are not mutagenic. The alteration can have direct or indirect effects on the DNA: the induction of mutations, mistimed event activation, and direct DNA damage leading to mutations. The permanent, heritable changes can affect either somatic cells of the organism or germ cells to be passed on to future generations. Cells prevent expression of the genotoxic mutation by either DNA repair or apoptosis; however, the damage may not always be fixed leading to mutagenesis.

Benzo(<i>a</i>)pyrene Carcinogenic compound found in smoke and soot

Benzo[a]pyrene (BaP or B[a]P) is a polycyclic aromatic hydrocarbon and the result of incomplete combustion of organic matter at temperatures between 300 °C (572 °F) and 600 °C (1,112 °F). The ubiquitous compound can be found in coal tar, tobacco smoke and many foods, especially grilled meats. The substance with the formula C20H12 is one of the benzopyrenes, formed by a benzene ring fused to pyrene. Its diol epoxide metabolites (more commonly known as BPDE) react with and bind to DNA, resulting in mutations and eventually cancer. It is listed as a Group 1 carcinogen by the IARC. In the 18th century a scrotal cancer of chimney sweepers, the chimney sweeps' carcinoma, was already known to be connected to soot.

<span class="mw-page-title-main">Methylcholanthrene</span> Chemical compound

Methylcholanthrene is a highly carcinogenic polycyclic aromatic hydrocarbon produced by burning organic compounds at very high temperatures. Methylcholanthrene is also known as 3-methylcholanthrene, 20-methylcholanthrene or the IUPAC name 3-methyl-1,2-dyhydrobenzo[j]aceanthrylene. The short notation often used is 3-MC or MCA. This compound forms pale yellow solid crystals when crystallized from benzene and ether. It has a melting point around 180 °C and its boiling point is around 280 °C at a pressure of 80 mmHg. Methylcholanthrene is used in laboratory studies of chemical carcinogenesis. It is an alkylated derivative of benz[a]anthracene and has a similar UV spectrum. The most common isomer is 3-methylcholanthrene, although the methyl group can occur in other places.

<span class="mw-page-title-main">Sudan I</span> Chemical compound

Sudan I is an organic compound, typically classified as an azo dye. It is an intensely orange-red solid that is added to colourise waxes, oils, petrol, solvents, and polishes. Sudan I has also been adopted for colouring various foodstuffs, especially curry powder and chili powder, although the use of Sudan I in foods is now banned in many countries, because Sudan I, Sudan III, and Sudan IV have been classified as category 3 carcinogens by the International Agency for Research on Cancer. Sudan I is still used in some orange-coloured smoke formulations and as a colouring for cotton refuse used in chemistry experiments.

<span class="mw-page-title-main">Benzotrichloride</span> Chemical compound

Benzotrichloride (BTC), also known as α,α,α-trichlorotoluene, phenyl chloroform or (trichloromethyl)benzene, is an organic compound with the formula C6H5CCl3. Benzotrichloride is an unstable, colorless or somewhat yellowish, viscous, chlorinated hydrocarbon with a penetrating odor. Benzotrichloride is used extensively as a chemical intermediate for products of various classes, i.e. dyes and antimicrobial agents.

Mercapturic acid is a condensation product formed from the coupling of cysteine with aromatic compounds. It is formed as a conjugate in the liver and is excreted in the urine.

<i>o</i>-Toluidine Aryl amine

o-Toluidine (ortho-toluidine) is an organic compound with the chemical formula CH3C6H4NH2. It is the most important of the three isomeric toluidines. It is a colorless liquid although commercial samples are often yellowish. It is a precursor to the herbicides metolachlor and acetochlor.

<span class="mw-page-title-main">2-Acetylaminofluorene</span> Chemical compound

2-Acetylaminofluorene is a carcinogenic and mutagenic derivative of fluorene. It is used as a biochemical tool in the study of carcinogenesis. It induces tumors in a number of species in the liver, bladder and kidney. The metabolism of this compound in the body by means of biotransformation reactions is the key to its carcinogenicity. 2-AAF is a substrate for cytochrome P-450 (CYP) enzyme, which is a part of a super family found in almost all organisms. This reaction results in the formation of hydroxyacetylaminofluorene which is a proximal carcinogen and is more potent than the parent molecule. The N-hydroxy metabolite undergoes several enzymatic and non-enzymatic rearrangements. It can be O-acetylated by cytosolic N-acetyltransferase enzyme to yield N-acetyl-N-acetoxyaminofluorene. This intermediate can spontaneously rearrange to form the arylamidonium ion and a carbonium ion which can interact directly with DNA to produce DNA adducts. In addition to esterification by acetylation, the N-hydroxy derivative can be O-sulfated by cytosolic sulfur transferase enzyme giving rise to the N-acetyl-N-sulfoxy product.

Benzo(<i>j</i>)fluoranthene Chemical compound

Benzo[j]fluoranthene (BjF) is an organic compound with the chemical formula C20H12. Classified as a polycyclic aromatic hydrocarbon (PAH), it is a colourless solid that is poorly soluble in most solvents. Impure samples can appear off white. Closely related isomeric compounds include benzo[a]fluoranthene (BaF), bendo[b]fluoranthene (BbF), benzo[e]fluoranthene (BeF), and benzo[k]fluoranthene (BkF). BjF is present in fossil fuels and is released during incomplete combustion of organic matter. It has been traced in the smoke of cigarettes, exhaust from gasoline engines, emissions from the combustion of various types of coal and emissions from oil heating, as well as an impurity in some oils such as soybean oil.

<span class="mw-page-title-main">Riddelliine</span> Chemical compound

Riddelliine is a chemical compound classified as a pyrrolizidine alkaloid. It was first isolated from Senecio riddellii and is also found in a variety of plants including Jacobaea vulgaris, Senecio vulgaris, and others plants in the genus Senecio.

<span class="mw-page-title-main">2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine</span> Chemical compound


PhIP (2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) is one of the most abundant heterocyclic amines (HCAs) in cooked meat. PhIP is formed at high temperatures from the reaction between creatine or creatinine, amino acids, and sugar. PhIP formation increases with the temperature and duration of cooking and also depends on the method of cooking and the variety of meat being cooked. The U.S. Department of Health and Human Services National Toxicology Program has declared PhIP as "reasonably anticipated to be a human carcinogen". International Agency for Research on Cancer (IARC), part of World Health Organization, has classified PhIP as IARC Group 2B carcinogen. There is sufficient evidence in experimental animals, as well as in vitro models, for the carcinogenicity of PhIP.

<span class="mw-page-title-main">Diepoxybutane</span> Chemical compound

Diepoxybutane is an epoxide which is a colorless liquid at room temperature. It is therefore highly reactive, more than other ethers. An epoxide is a cyclic ether that contains a three atom ring that comes close to an equilateral triangle. The primary structure of an epoxide contains two carbon atoms and a hydrocarbon attached to an oxygen atom. It polymerizes in the presence of catalysts or when heated. It’s hydrophilic, very flammable and easily ignited by heat or sparks.

Methacrylonitrile, MeAN in short, is a chemical compound that is an unsaturated aliphatic nitrile, widely used in the preparation of homopolymers, copolymers, elastomers, and plastics and as a chemical intermediate in the preparation of acids, amides, amines, esters, and other nitriles. MeAN is also used as a replacement for acrylonitrile in the manufacture of an acrylonitrile/butadiene/styrene-like polymer. It is a clear and colorless liquid, that has a bitter almond smell.

Toxicodynamics, termed pharmacodynamics in pharmacology, describes the dynamic interactions of a toxicant with a biological target and its biological effects. A biological target, also known as the site of action, can be binding proteins, ion channels, DNA, or a variety of other receptors. When a toxicant enters an organism, it can interact with these receptors and produce structural or functional alterations. The mechanism of action of the toxicant, as determined by a toxicant’s chemical properties, will determine what receptors are targeted and the overall toxic effect at the cellular level and organismal level.

Benzo(<i>c</i>)fluorene Chemical compound

Benzo[c]fluorene is a polycyclic aromatic hydrocarbon (PAH) with mutagenic activity. It is a component of coal tar, cigarette smoke and smog and thought to be a major contributor to its carcinogenic properties. The mutagenicity of benzo[c]fluorene is mainly attributed to formation of metabolites that are reactive and capable of forming DNA adducts. According to the KEGG it is a group 3 carcinogen. Other names for benzo[c]fluorene are 7H-benzo[c]fluorene, 3,4-benzofluorene, and NSC 89264.

<span class="mw-page-title-main">4-Ipomeanol</span> Chemical compound

4-Ipomeanol (4-IPO) is a pulmonary pre-toxin isolated from sweet potatoes infected with the fungus Fusarium solani. One of the 4-IPO metabolites is toxic to the lungs, liver and kidney in humans and animals. This metabolite can covalently bind to proteins, thereby interfering with normal cell processes.

References

  1. Hemgesberg, Melanie N.; Bonck, Thorsten; Merz, Karl-Heinz; Sun, Yu; Schrenk, Dieter (2016). "Crystal Structure of Glycidamide: The Mutagenic and Genotoxic Metabolite of Acrylamide". Acta Crystallographica Section E. 72 (8): 1179–1182. doi:10.1107/S2056989016010859. PMC   4971867 . PMID   27536408.
  2. Friedman, Mendel (2003). "Chemistry, Biochemistry, and Safety of Acrylamide. A Review". Journal of Agricultural and Food Chemistry. 51 (16): 4504–4526. doi:10.1021/jf030204+. PMID   14705871.
  3. Mendel Friedman, Don Mottram, ed. (2005). Chemistry and Safety of Acrylamide in Food. ISBN   978-1-4419-3672-1.
  4. 1 2 Bergmark, E., Calleman, C. J., & Costa, L. G. (1991). Formation of hemoglobin adducts of acrylamide and its epoxide metabolite glycidamide in the rat. Toxicology and Applied Pharmacology, 111(2), 352-363.
  5. 1 2 Beland, F. A., Olson, G. R., Mendoza, M. C., Marques, M. M., & Doerge, D. R. (2015). Carcinogenicity of glycidamide in B6C3F 1 mice and F344/N rats from a two-year drinking water exposure. Food and Chemical Toxicology, 86, 104-115.
  6. 1 2 3 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. "Acrylamide" in IARC Monographs on the evaluation of carcinogen risk to humans, International Agency for Research on Cancer, Lyon, France, 1994, 60:389–433.
  7. 1 2 Klaunig, James E. (2008). "Acrylamide Carcinogenicity". Journal of Agricultural and Food Chemistry. 56 (15): 5984–5988. doi:10.1021/jf8004492. PMID   18624430.
  8. Murray, J. V.; Cloke, J. B. (1934). "The Formation of Glycidamides by the Action of Hydrogen Peroxide on α, β-Ethylenic Nitriles". Journal of the American Chemical Society. 56 (12): 2749-2751. doi:10.1021/ja01327a070.
  9. 1 2 Besaratinia, A., & Pfeifer, G. P. (2004). Genotoxicity of acrylamide and glycidamide. Journal of the National Cancer Institute, 96(13), 1023-1029.
  10. Granvogl, M., Koehler, P., Latzer, L., & Schieberle, P. (2008). Development of a stable isotope dilution assay for the quantitation of glycidamide and its application to foods and model systems. Journal of agricultural and food chemistry, 56(15), 6087-6092.
  11. Schettgen, T., Müller, J., Fromme, H., & Angerer, J. (2010). Simultaneous quantification of haemoglobin adducts of ethylene oxide, propylene oxide, acrylonitrile, acrylamide and glycidamide in human blood by isotope-dilution GC/NCI-MS/MS. Journal of Chromatography B 878(27), 2467-2473.
  12. "Scientific Opinion on Acrylamide in Food". EFSA Journal. 13 (6). 2015. doi: 10.2903/j.efsa.2015.4104 .
  13. 1 2 3 Luo, Y. S., Long, T. Y., Shen, L. C., Huang, S. L., Chiang, S. Y., & Wu, K. Y. (2015). Synthesis, characterization and analysis of the acrylamide-and glycidamide-glutathione conjugates. Chemico-Biological Interactions, 237, 38-46.
  14. Lehning, E. J., Persaud, A., Dyer, K. R., Jortner, B. S., & LoPachin, R. M. (1998). Biochemical and morphologic characterization of acrylamide peripheral neuropathy. Toxicology and Applied Pharmacology, 151(2), 211-221.
  15. LoPachin, R. M., & Lehning, E. J. (1997). Mechanism of calcium entry during axon injury and degeneration. Toxicology and Applied Pharmacology, 143(2), 233-244.
  16. Kurebayashi, H., & Ohno, Y. (2006). Metabolism of acrylamide to glycidamide and their cytotoxicity in isolated rat hepatocytes: protective effects of GSH precursors. Archives of Toxicology, 80(12), 820-828.
  17. Manjanatha, M.G., Aidoo, A., Shelton, S.D., Bishop, M.E., McDaniel, L.P., Lyn-Cook, L.E. & Doerge D.R. (2006). Genotoxicity of acrylamide and its metabolite glycidamide administered in drinking water to male and female Big Blue mice. Environ Mol Mutagen;47:6–17
  18. Mei, N., McDaniel, L.P., Dobrovolsky, V.N., Guo, X., Shaddock, J.G., Mittelstaedt, R.A., Azuma, M., Shelton, S.D., McGarrity, L.J., Doerge, D.R. & Heflich, R.H. (2010). The genotoxicity of acrylamide and glycidamide in Big Blue rats. Toxicol Sci; 115:412–21
  19. Von Tungeln, L. S., Doerge, D. R., Gamboa da Costa, G., Matilde Marques, M., Witt, W. M., Koturbash, I., Pogribny, I.P. & Beland, F. A. (2012). Tumorigenicity of acrylamide and its metabolite glycidamide in the neonatal mouse bioassay.International Journal of Cancer, 131(9), 2008-2015.
  20. National Toxicology Program. (2014). NTP Technical Report on the Toxicology and Carcinogenesis: Studies of Glycidamide. Retrieved on March 11, 2016, from http://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr588_508.pdf