Timeline of crystallography

Last updated

Contents

This is a timeline of crystallography.

17th Century

18th Century

19th Century

20th Century

21st Century

Related Research Articles

<span class="mw-page-title-main">Crystallography</span> Scientific study of crystal structures

Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics. The word crystallography is derived from the Ancient Greek word κρύσταλλος, and γράφειν. In July 2012, the United Nations recognised the importance of the science of crystallography by proclaiming that 2014 the International Year of Crystallography.

<span class="mw-page-title-main">X-ray crystallography</span> Technique used for determining crystal structures and identifying mineral compounds

X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract in specific directions. By measuring the angles and intensities of the X-ray diffraction, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal and the positions of the atoms, as well as their chemical bonds, crystallographic disorder, and other information.

<span class="mw-page-title-main">Electron diffraction</span> Bending of electron beams due to electrostatic interactions with matter

Electron diffraction is a generic term for phenomena associated with changes in the direction of electron beams due to elastic interactions with atoms. It occurs due to elastic scattering, when there is no change in the energy of the electrons. The negatively charged electrons are scattered due to Coulomb forces when they interact with both the positively charged atomic core and the negatively charged electrons around the atoms. The resulting map of the directions of the electrons far from the sample is called a diffraction pattern, see for instance Figure 1. Beyond patterns showing the directions of electrons, electron diffraction also plays a major role in the contrast of images in electron microscopes.

<span class="mw-page-title-main">Robert Huber</span> German biochemist and Nobel laureate (born 1937)

Robert Huber is a German biochemist and Nobel laureate. known for his work crystallizing an intramembrane protein important in photosynthesis and subsequently applying X-ray crystallography to elucidate the protein's structure.

In physics, the phase problem is the problem of loss of information concerning the phase that can occur when making a physical measurement. The name comes from the field of X-ray crystallography, where the phase problem has to be solved for the determination of a structure from diffraction data. The phase problem is also met in the fields of imaging and signal processing. Various approaches of phase retrieval have been developed over the years.

Electron crystallography is a subset of methods in electron diffraction focusing just upon detailed determination of the positions of atoms in solids using a transmission electron microscope (TEM). It can involve the use of high-resolution transmission electron microscopy images, electron diffraction patterns including convergent-beam electron diffraction or combinations of these. It has been successful in determining some bulk structures, and also surface structures. Two related methods are low-energy electron diffraction which has solved the structure of many surfaces, and reflection high-energy electron diffraction which is used to monitor surfaces often during growth.

Jack David Dunitz FRS was a British chemist and widely known chemical crystallographer. He was Professor of Chemical Crystallography at the ETH Zurich from 1957 until his official retirement in 1990. He held Visiting Professorships in the United States, Israel, Japan, Canada, Spain and the United Kingdom.

<span class="mw-page-title-main">John M. Cowley</span> Australian physicist (1923–2004)

John Maxwell Cowley was an American Regents Professor at Arizona State University. The John M. Cowley Center for High-Resolution Electron Microscopy at Arizona State is named in his honor.

John Cowley was an extraordinarily productive scientist over more than five decades. He made pioneering contributions in the fields of electron microscopy, diffraction and crystallography, all of which brought him widespread recognition. He received the highest awards of the International Union of Crystallography, the Electron Microscopy Society of America and the American Crystallographic Society, and he was honored by election to Fellowship of the Australian Academy of Science, The Royal Society of London, and the American Physical Society. His monograph Diffraction Physics remains the standard reference in the field. His ideas, enthusiasm and basic understanding of electron optics and diffraction phenomena provided a valued source of leadership to many generations of students and co-workers, and he was universally admired by his peers and colleagues as a great and inspiring scientist.

Multi-wavelength anomalous diffraction is a technique used in X-ray crystallography that facilitates the determination of the three-dimensional structure of biological macromolecules via solution of the phase problem.

Acta Crystallographica is a series of peer-reviewed scientific journals, with articles centred on crystallography, published by the International Union of Crystallography (IUCr). Originally established in 1948 as a single journal called Acta Crystallographica, there are now six independent Acta Crystallographica titles:

A crystallographic database is a database specifically designed to store information about the structure of molecules and crystals. Crystals are solids having, in all three dimensions of space, a regularly repeating arrangement of atoms, ions, or molecules. They are characterized by symmetry, morphology, and directionally dependent physical properties. A crystal structure describes the arrangement of atoms, ions, or molecules in a crystal.

Eleanor Joy Dodson FRS is an Australian-born biologist who specialises in the computational modelling of protein crystallography. She holds a chair in the Department of Chemistry at the University of York. She is the widow of the scientist Guy Dodson.

<span class="mw-page-title-main">Protein crystallization</span>

Protein crystallization is the process of formation of a regular array of individual protein molecules stabilized by crystal contacts. If the crystal is sufficiently ordered, it will diffract. Some proteins naturally form crystalline arrays, like aquaporin in the lens of the eye.

<span class="mw-page-title-main">Randy Read</span> Canadian-British scientist (1957–)

Randy John Read is a Wellcome Trust Principal Research Fellow and professor of protein crystallography at the University of Cambridge.

Quantum crystallography is a branch of crystallography that investigates crystalline materials within the framework of quantum mechanics, with analysis and representation, in position or in momentum space, of quantities like wave function, electron charge and spin density, density matrices and all properties related to them. Like the quantum chemistry, Quantum crystallography involves both experimental and computational work. The theoretical part of quantum crystallography is based on quantum mechanical calculations of atomic/molecular/crystal wave functions, density matrices or density models, used to simulate the electronic structure of a crystalline material. While in quantum chemistry, the experimental works mainly rely on spectroscopy, in quantum crystallography the scattering techniques play the central role, although spectroscopy as well as atomic microscopy are also sources of information.

<span class="mw-page-title-main">Cryogenic electron microscopy</span> Form of transmission electron microscopy (TEM)

Cryogenic electron microscopy (cryo-EM) is a cryomicroscopy technique applied on samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An aqueous sample solution is applied to a grid-mesh and plunge-frozen in liquid ethane or a mixture of liquid ethane and propane. While development of the technique began in the 1970s, recent advances in detector technology and software algorithms have allowed for the determination of biomolecular structures at near-atomic resolution. This has attracted wide attention to the approach as an alternative to X-ray crystallography or NMR spectroscopy for macromolecular structure determination without the need for crystallization.

Microcrystal electron diffraction, or MicroED, is a CryoEM method that was developed by the Gonen laboratory in late 2013 at the Janelia Research Campus of the Howard Hughes Medical Institute. MicroED is a form of electron crystallography where thin 3D crystals are used for structure determination by electron diffraction. Prior to this demonstration, macromolecular (protein) electron crystallography was mainly used on 2D crystals, for example. The method is one of several modern versions of approaches to determine atomic structures using electron diffraction first demonstrated for the positions of hydrogen atoms in NH4Cl crystals by W. E. Laschkarew and I. D. Usykin in 1933, which has since been used for surfaces, via precession electron diffraction, with much of the early work described in the work of Boris Vainshtein and Douglas L. Dorset.

Aafje Looijenga-Vos was a Dutch crystallographer. She was a professor for general chemistry and later for structural chemistry at the University of Groningen.

<span class="mw-page-title-main">Durward William John Cruickshank</span> British crystallographer

Durward William John Cruickshank, often known as D. W. J. Cruickshank, was a British crystallographer whose work transformed the precision of determining molecular structures from X-ray crystal structure analysis. He developed the theoretical framework for anisotropic displacement parameters, also known as the thermal ellipsoid, for crystal structure determination in a series of papers published in 1956 in Acta Crystallographica.

Alexander Frank Wells, or A. F. Wells, was a British chemist and crystallographer. He is known for his work on structural inorganic chemistry, which includes the description and classification of structural motifs, such as the polyhedral coordination environments, in crystals obtained from X-ray crystallography. His work is summarized in a classic reference book, Structural inorganic chemistry, first appeared in 1945 and has since gone through five editions. In addition, his work on crystal structures in terms of nets have been important and inspirational for the field of metal-organic frameworks and related materials.

References

  1. Steno, N. (1669). De solido intra solidum naturaliter contento, Star, Florence
  2. Molčanov, Krešimir; Stilinović, Vladimir (2014). "Chemical Crystallography before X-ray Diffraction". Angewandte Chemie International Edition. 53 (3): 638–652. doi:10.1002/anie.201301319. PMID   24065378.
  3. Cappeller, M.A. (1723). Prodromus crystallographiae de crystallis improprie sic dictis commentarium, H.R. Wyssing, Lucerne
  4. Macquer, P.-J. (1766). Dictionnaire de Chymie, Lacombe, Paris
  5. Romé de l'Isle, J.-B. L. (1772). Essai de Cristallographie, Knapen & Delaguete, Paris
  6. Brock, H. (1910). The Catholic Encyclopedia, Robert Appleton Company, New York.
  7. Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l’histoire naturelle et sur les arts, XIX, 366-370
  8. Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l’histoire naturelle et sur les arts. XX, 33-39
  9. Romé de l'Isle, J.-B. L. (1783). Cristallographie ou description des formes propres à tous les corps du règne minéral dans l'état de combinaison saline, pierreuse ou métallique, Paris
  10. Haüy, R.J. (1784). Essai d’une théorie sur la structure des cristaux, appliquée à plusieurs genres de substances cristallisées, Chez Gogué et Née de La Rochelle, Paris
  11. Haüy, R.J. (1795). Leçons de Physique, in Séances des Ecoles normales […], L. Reynier, Paris
  12. Haüy, R.J. (1801). Traité de Minéralogie, Chez Louis, Paris
  13. Haüy, R.J. (1822). Traité de Cristallographie, Bachelier et Huzard, Paris
  14. Haüy, R.J. (1815). Memoire sur une loi de cristallisation appelée loi de symmétrie, Mémoires du Muséum d’Histoire naturelle 1, 81-101, 206-225, 273-298, 341-352
  15. Weiss, C.S. (1815). Uebersichtliche Darstellung der versschiedenen naturlichen Abteilungen der Kristallisations-Systeme, Abh. K. Akad. Wiss., Berlin. 289-337, 1814-1815.
  16. Melhado, Evan M. (1980-01-01). "Mitscherlich's discovery of isomorphism". Historical Studies in the Physical Sciences. 11 (1): 87–123. doi:10.2307/27757472. ISSN   0073-2672. JSTOR   27757472.
  17. Mohs, F. (1822). On the crystallographic discoveries and systems of Weiss and Mohs, The Edinburgh Philosophical Journal, VIII, 275-290
  18. Neumann, F.E. (1823). Beiträge zur Krystallonomie, Ernst Siegfried Mittler, Berlin und Posen
  19. Seeber, L.A. (1824). Versuch einer Erklärung des inneren Baues der Festen Körper, Ann. Phys., 76, 229-248, 349-371
  20. Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena), 19, 497-515, 542-565
  21. Hessel J.F.C. (1830). Krystallometrie oder Krystallonomie und Krystallographie, in Gehler’s Physikalisches Wörterbuch, 8, 1023-1360, Schwickert, Leipzig
  22. Wöhler; Liebig (1832). "Untersuchungen über das Radikal der Benzoesäure". Annalen der Pharmacie (in German). 3 (3): 249–282. doi:10.1002/jlac.18320030302. hdl: 2027/hvd.hxdg3f .
  23. Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
  24. Delafosse, G. (1840). De la Structure des Cristaux […] sur l’Importance de l’etude de la Symétrie dans les différentes Branches de l’Histoire Naturelle […], Fain and Thunot, Paris
  25. Frankenheim, M.L. (1842). System der Kristalle. Nova Acta Acad. Naturae Curiosorum, 19, (2), 469-660
  26. Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26, 535–538
  27. Vantomme, Ghislaine; Crassous, Jeanne (2021). "Pasteur and chirality: A story of how serendipity favors the prepared minds". Chirality. 33 (10): 597–601. doi:10.1002/chir.23349. ISSN   0899-0042. PMC   9291139 . PMID   34363261.
  28. Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace, J. l’Ecole Polytechnique 19, 1-128
  29. Bravais, M.A. (1949). On the systems formed by points regularly distributed on a plane or in space, English translation by Shaler, A.J., Crystallographic Society of America, Michigan. OCLC   1123365404
  30. Gadolin, A. (1871). Mémoire sur la déduction d’un seul principe de tous les systems cristallographiques avec leurs subdivisions (Memoir on the deduction from a single principle of all the crystal systems with their subdivisions), Acta Soc. Sci. Fennicae., 9, 1-71
  31. Authier, A. (2013). Early days of x-ray crystallography, International Union of Crystallography Texts on Crystallography, Oxford University Press, Oxford, p.83 ISBN   9780198754053
  32. Mallard, E.-F. (1877). Explication des phénomènes optiques anomaux, Dunod, Paris, 143pp.
  33. Nolze, Gert; Tokarski, Tomasz; Rychłowski, Łukasz (2023). "Use of electron backscatter diffraction patterns to determine the crystal lattice. Part 3. Pseudosymmetry". Journal of Applied Crystallography. 56 (2): 367–380. Bibcode:2023JApCr..56..367N. doi:10.1107/S1600576723000845. PMC   10077860 . PMID   37032972.
  34. Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
  35. Reinitzer, Friedrich (1888). "Beiträge zur Kenntniss des Cholesterins". Monatshefte für Chemie - Chemical Monthly. 9: 421–441. doi:10.1007/BF01516710.
  36. Lehmann, O. (1889). "Über fliessende Krystalle". Zeitschrift für Physikalische Chemie. 4U: 462–472. doi:10.1515/zpch-1889-0434.
  37. Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg), 28, 1-146
  38. Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner, Leipzig
  39. Barlow W. (1894). Über die Geometrischen Eigenschaften homogener starrer Strukturen und ihre Anwendung auf Krystalle (On the geometrical properties of homogeneous rigid structures and their application to crystals), Zeitschrift für Krystallographie und Minerologie, 23, 1–63.
  40. Curie, P. (1894). "Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique". Journal de Physique Théorique et Appliquée. 3 (1): 393–415. doi:10.1051/jphystap:018940030039300. ISSN   0368-3893.
  41. De Gennes, P. G. (1982). "Pierre curie and the role of symmetry in physical laws". Ferroelectrics. 40 (1): 125–129. doi:10.1080/00150198208218162. ISSN   0015-0193.
  42. "On a New Kind of Rays". Nature. 53 (1369): 274–276. 1896. doi: 10.1038/053274b0 .
  43. Haga, H.; Wind, C. H. (1899). "Die Beugung der Röntgenstrahlen". Annalen der Physik. 304 (8): 884–895. doi:10.1002/andp.18993040820. ISSN   0003-3804.
  44. Barkla, C.G. (1905). "XIII. Polarised röntgen radiation". Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 204 (372–386): 467–479. doi:10.1098/rsta.1905.0013. ISSN   0264-3952.
  45. Walter, B.; Pohl, R. (1908). "Zur Frage der Beugung der Röntgenstrahlen". Annalen der Physik (in German). 330 (4): 715–724. Bibcode:1908AnP...330..715W. doi:10.1002/andp.19083300405.
  46. Walter, B.; Pohl, R. (1909). "Weitere Versuche über die Beugung der Röntgenstrahlen". Annalen der Physik (in German). 334 (7): 331–354. Bibcode:1909AnP...334..331W. doi:10.1002/andp.19093340707.
  47. Laue, Max von (1912). Eine quantitative prüfung der theorie für die interferenz-erscheinungen bei Röntgenstrahlen, Sitzungsberichte der Kgl. Bayer. Akad. Der Wiss., 363–373
  48. Bragg, W.L. (1913). The diffraction of short electromagnetic waves by a crystal, Proc. Cambridge Phil. Soc., 17, 43-57
  49. Baumhauer, Heinrich (1912-12-01). "VII. Über die Krystalle des Carborundums". Zeitschrift für Kristallographie - Crystalline Materials. 50 (1–6): 33–39. doi:10.1524/zkri.1912.50.1.33. ISSN   2196-7105. S2CID   102105832.
  50. Bragg, W. L. (1913). "The structure of some crystals as indicated by their diffraction of X-rays". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 89 (610): 248–277. Bibcode:1913RSPSA..89..248B. doi: 10.1098/rspa.1913.0083 .
  51. Friedel G. (1913). Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen, Comptes Rendus., 157, 1533–1536
  52. "The Nobel Prize in Physics 1914"
  53. Bragg, W. H.; Bragg, W. L. "X rays and crystal structure". Rootenberg Rare Books & Manuscripts. Retrieved 2024-05-14.
  54. "The Nobel Prize in Physics 1915"
  55. Debye, P. and Scherrer P. (1916). Interferenzen an regellos orientierten Teilchen im Röntgenlicht. I., Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1-15. eudml.org/doc/58947
  56. Ewald, P. P. (1916). "Zur Begründung der Kristalloptik". Annalen der Physik (in German). 354 (2): 117–143. Bibcode:1916AnP...354..117E. doi:10.1002/andp.19163540202.
  57. Hull., A. W. (1917). "A New Method of X-Ray Crystal Analysis". Physical Review. 10 (6): 661–696. Bibcode:1917PhRv...10..661H. doi:10.1103/PhysRev.10.661.
  58. Suits, C.G. and Lafferty, J.M. (1970). Albert Wallace Hull 1880—1966: a biographical memoir, National Academy of Sciences, Washington D.C., 20pp.
  59. Herzog, R. O.; Jancke, Willi (1920). "Röntgenspektrographische Beobachtungen an Zellulose.: Vorläufige Mitteilung". Zeitschrift für Physik (in German). 3 (3): 196–198. doi:10.1007/BF01331987. ISSN   1434-6001.
  60. Wyckoff, R.W.G. (1922). The analytical expression of the results of the theory of space-groups, Carnegie Institute of Washington. OCLC   3557642
  61. Dickinson, Roscoe G.; Raymond, Albert L. (1923). "The Crystal Structure of Hexamethylene-Tetramine" (PDF). Journal of the American Chemical Society. 45: 22–29. doi:10.1021/ja01654a003.
  62. Gonell, H. W.; Mark, H. (1923). "Röntgenographische Bestimmung der Strukturformel des Hexamethylentetramins". Zeitschrift für Physikalische Chemie. 107U: 181–218. doi:10.1515/zpch-1923-10715.
  63. Bragg, William; Gibbs, R. E. (1925). "The structure of α and β quartz". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 109 (751): 405–427. Bibcode:1925RSPSA.109..405B. doi: 10.1098/rspa.1925.0135 .
  64. Gibbs, Reginald E. (1928). "Quartz". Science Progress in the Twentieth Century (1919-1933). 22 (88): 613–629. ISSN   2059-4941.
  65. de Broglie, Louis Victor. "On the Theory of Quanta" (PDF). Foundation of Louis de Broglie (English translation by A.F. Kracklauer, 2004. ed.). Retrieved 25 February 2023.
  66. Bernal, J. D. (1924). "The structure of graphite". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 106 (740): 749–773. Bibcode:1924RSPSA.106..749B. doi: 10.1098/rspa.1924.0101 .
  67. Goldschmidt, V. M. (1926). Geochemische Verteilungsgesetze, VII: Die Gesetze der Krystallochemie, Skrifter Norsk. Vid. Akademie, Oslo, Mat. Nat. Kl.
  68. Zernike, F.; Prins, J. A. (1927). "Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung". Zeitschrift für Physik A Hadrons and nuclei (in German). 41 (2–3): 184–194. doi:10.1007/BF01391926. ISSN   0939-7922.
  69. Davisson, C.; Germer, L. H. (1927). "The Scattering of Electrons by a Single Crystal of Nickel". Nature. 119 (2998): 558–560. Bibcode:1927Natur.119..558D. doi:10.1038/119558a0. ISSN   0028-0836. S2CID   4104602.
  70. Davisson, C.; Germer, L. H. (1927). "Diffraction of Electrons by a Crystal of Nickel". Physical Review. 30 (6): 705–740. Bibcode:1927PhRv...30..705D. doi: 10.1103/physrev.30.705 . ISSN   0031-899X.
  71. Davisson, C. J.; Germer, L. H. (1928). "Reflection of Electrons by a Crystal of Nickel". Proceedings of the National Academy of Sciences. 14 (4): 317–322. Bibcode:1928PNAS...14..317D. doi: 10.1073/pnas.14.4.317 . ISSN   0027-8424. PMC   1085484 . PMID   16587341.
  72. Davisson, C. J.; Germer, L. H. (1928). "Reflection and Refraction of Electrons by a Crystal of Nickel". Proceedings of the National Academy of Sciences. 14 (8): 619–627. Bibcode:1928PNAS...14..619D. doi: 10.1073/pnas.14.8.619 . ISSN   0027-8424. PMC   1085652 . PMID   16587378.
  73. Thomson, G. P.; Reid, A. (1927). "Diffraction of Cathode Rays by a Thin Film". Nature. 119 (3007): 890. Bibcode:1927Natur.119Q.890T. doi: 10.1038/119890a0 . ISSN   0028-0836. S2CID   4122313.
  74. Reid, Alexander (1928). "The diffraction of cathode rays by thin celluloid films". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 119 (783): 663–667. Bibcode:1928RSPSA.119..663R. doi: 10.1098/rspa.1928.0121 . ISSN   0950-1207. S2CID   98311959.
  75. Navarro, Jaume (2010). "Electron diffraction chez Thomson: early responses to quantum physics in Britain". The British Journal for the History of Science. 43 (2): 245–275. doi:10.1017/S0007087410000026. ISSN   0007-0874. S2CID   171025814.
  76. Machatschki, F. (1928). Zur Frage der Struktur und Konstitution der Feldspäte, Zentralbl. Min., 97–100
  77. Lonsdale, K. (1928). "The Structure of the Benzene Ring". Nature. 122 (3082): 810. Bibcode:1928Natur.122..810L. doi:10.1038/122810c0.
  78. Niggli, Paul (1928). Krystallographische und strukturtheoretische Grundbegriffe (in German). Leipzig: Akad. Verl.-Ges. OCLC   180664864.
  79. Bethe, H. (1928). "Theorie der Beugung von Elektronen an Kristallen". Annalen der Physik. 392 (17): 55–129. doi:10.1002/andp.19283921704. ISSN   0003-3804.
  80. Hermann, C. (1928). "XVI. Zur systematischen Strukturtheorie". Zeitschrift für Kristallographie - Crystalline Materials. 68 (1–6): 257–287. doi:10.1524/zkri.1928.68.1.257.
  81. Mauguin, Ch. (1931). "Sur le symbolisme des groupes de repetition on de symetrie des assemblages cristallins". Zeitschrift für Kristallographie - Crystalline Materials. 76 (1–6): 542–558. doi:10.1524/zkri.1931.76.1.542.
  82. Pauling, Linus (1929). "The Principles Determining the Structure of Complex Ionic Crystals". Journal of the American Chemical Society. 51 (4): 1010–1026. doi:10.1021/ja01379a006.
  83. "The crystal structure of ice between 0 °C. and —183 °C". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 125 (799): 670–693. 1929. doi: 10.1098/rspa.1929.0195 . ISSN   0950-1207.
  84. Bragg, W. L. (1930). "XXV. The Structure of Silicates". Zeitschrift für Kristallographie - Crystalline Materials. 74 (1–6): 237–305. doi:10.1524/zkri.1930.74.1.237.
  85. Mark, Herman; Wierl, Raymond (1930). "Neuere Ergebnisse der Elektronenbeugung". Die Naturwissenschaften. 18 (36): 778–786. Bibcode:1930NW.....18..778M. doi:10.1007/bf01497860. ISSN   0028-1042. S2CID   9815364.
  86. Mark, Herman; Wiel, Raymond (1930). "Die ermittlung von molekülstrukturen durch beugung von elektronen an einem dampfstrahl". Zeitschrift für Elektrochemie und angewandte physikalische Chemie. 36 (9): 675–676. doi:10.1002/bbpc.19300360921. S2CID   178706417.
  87. Ewald, Paul Peter; Hermann, C (1931). Strukturbericht, 1913-1928 (in German). Leipzig: Akademische Verlagsgesellschaft. OCLC   29150452.
  88. Laves, F. (1931). "Ebenenteilung und Koordinationszahl". Zeitschrift für Kristallographie - Crystalline Materials. 78 (1–6): 208–241. doi:10.1524/zkri.1931.78.1.208.
  89. Zachariasen, W. H. (1932). "The Atomic Arrangement in Glass". Journal of the American Chemical Society. 54 (10): 3841–3851. doi:10.1021/ja01349a006.
  90. Rinne, Friedrich (1932-11-01). "Über Beziehungen der gewässerten Bromphenanthrensulfosäure zu organismischen Parakristallen". Zeitschrift für Kristallographie - Crystalline Materials. 82 (1–6): 379–393. doi:10.1524/zkri.1932.82.1.379. ISSN   2196-7105. S2CID   100926260.
  91. Rinne, Friedrich (1933). "Investigations and considerations concerning paracrystallinity". Transactions of the Faraday Society. 29 (140): 1016–1032. doi:10.1039/TF9332901016. ISSN   0014-7672.
  92. Laschkarew, W. E.; Usyskin, I. D. (1933). "Die Bestimmung der Lage der Wasserstoffionen im NH4Cl-Kristallgitter durch Elektronenbeugung". Zeitschrift für Physik (in German). 85 (9–10): 618–630. Bibcode:1933ZPhy...85..618L. doi:10.1007/BF01331003. ISSN   1434-6001. S2CID   123199621.
  93. Patterson, A. L. (1934). "A Fourier Series Method for the Determination of the Components of Interatomic Distances in Crystals". Physical Review. 46 (5): 372–376. Bibcode:1934PhRv...46..372P. doi:10.1103/PhysRev.46.372.
  94. Frondel, C. (1988). Memorial of Martin Julian Buerger, April 8, l903 - February 26, 1986, American Mineralogist, 73 (11-12), 1483-1485, 1988
  95. Beevers, C. A.; Lipson, H. (1934). "The crystal structure of copper sulphate pentahydrate, CuSO 4 .5H 2 O". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 146 (858): 570–582. Bibcode:1934RSPSA.146..570B. doi: 10.1098/rspa.1934.0173 .
  96. Beevers, CA; Lipson, H. (1985). "A Brief History of Fourier Methods in Crystal-structure Determination". Australian Journal of Physics. 38 (3): 263. Bibcode:1985AuJPh..38..263B. doi:10.1071/PH850263.
  97. Laves, F. and Löhberg, K. (1934). Die Kristallstruktur von intermetallischen Verbindungen der Formel AB2, Nachr. Ges. Wiss. Göttingen 1, 59-66.
  98. Laves, F. and Witte, H. (1935). Die Kristallstruktur des MgNi2 und seine Beziehungen zu den Typen des MgCu2 und MgZn2, Metallwirtschaft, 14, 645-649.
  99. Schulze, Gustav E. R. (1939). "Zur Kristallchemie der intermetallischen AB2-Verbindungen (Laves-Phasen)". Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie. 45 (12): 849–865. doi:10.1002/bbpc.19390451202.
  100. Barrett, C. and Massalski, T.B. (1980). Structure of metals, 3rd rev. ed., Pergamon Press, Oxford, 256-259. ISBN   9780080261713
  101. Hermann, C. (ed.) (1935). Internationale Tabellen zur Bestimmung von Kristallstrukturen, 2 vols., Gebrüder, Berlin, 692pp. OCLC   2131165
  102. Brock, C. (2014). International Tables for Crystallography, IUCr Newsletter, 22 (2).
  103. "X-Ray studies of the structure of hair, wool, and related fibres. II.- the molecular structure and elastic properties of hair keratin". Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 232 (707–720): 333–394. 1933. doi:10.1098/rsta.1934.0010.
  104. Astbury, W. T.; Sisson, Wayne A. (1935). "X-ray studies of the structure of hair, wool, and related fibres - III—The configuration of the keratin molecule and its orientation in the biological cell". Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences. 150 (871): 533–551. Bibcode:1935RSPSA.150..533A. doi:10.1098/rspa.1935.0121.
  105. "The Nobel Prize in Chemistry 1936"
  106. Boersch, H. (1936). "Über das primäre und sekundäre Bild im Elektronenmikroskop. II. Strukturuntersuchung mittels Elektronenbeugung". Annalen der Physik (in German). 419 (1): 75–80. Bibcode:1936AnP...419...75B. doi:10.1002/andp.19364190107.
  107. "The Nobel Prize in Physics 1937"
  108. Guinier, André (1939). "La diffraction des rayons X aux très petits angles : application à l'étude de phénomènes ultramicroscopiques". Annales de Physique (in French). 11 (12): 161–237. doi:10.1051/anphys/193911120161. ISSN   0003-4169.
  109. Kossel, W.; Möllenstedt, G. (1939). "Elektroneninterferenzen im konvergenten Bündel". Annalen der Physik. 428 (2): 113–140. doi:10.1002/andp.19394280204. ISSN   0003-3804.
  110. Goodman, P.; Lehmpfuhl, G. (1968). "Observation of the breakdown of Friedel's law in electron diffraction and symmetry determination from zero-layer interactions". Acta Crystallographica Section A. 24 (3): 339–347. Bibcode:1968AcCrA..24..339G. doi:10.1107/S0567739468000677.
  111. Buxton, B. F.; Eades, J. A.; Steeds, John Wickham; Rackham, G. M.; Frank, Frederick Charles (1976). "The symmetry of electron diffraction zone axis patterns". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 281 (1301): 171–194. Bibcode:1976RSPTA.281..171B. doi:10.1098/rsta.1976.0024. S2CID   122890943.
  112. Steeds, J. W.; Vincent, R. (1983). "Use of high-symmetry zone axes in electron diffraction in determining crystal point and space groups". Journal of Applied Crystallography. 16 (3): 317–324. Bibcode:1983JApCr..16..317S. doi:10.1107/S002188988301050X. ISSN   0021-8898.
  113. Bird, D. M. (1989). "Theory of zone axis electron diffraction". Journal of Electron Microscopy Technique. 13 (2): 77–97. doi:10.1002/jemt.1060130202. ISSN   0741-0581. PMID   2681572.
  114. Tanaka, M.; Saito, R.; Sekii, H. (1983). "Point-group determination by convergent-beam electron diffraction". Acta Crystallographica Section A. 39 (3): 357–368. Bibcode:1983AcCrA..39..357T. doi:10.1107/S010876738300080X. ISSN   0108-7673.
  115. Tanaka, M.; Saito, R.; Watanabe, D. (1980). "Symmetry determination of the room-temperature form of LnNbO 4 (Ln = La,Nd) by convergent-beam electron diffraction". Acta Crystallographica Section A. 36 (3): 350–352. Bibcode:1980AcCrA..36..350T. doi:10.1107/S0567739480000800. ISSN   0567-7394. S2CID   98184340.
  116. Messick, Julian. "The history of the ICDD" (PDF).
  117. Brindley, G. W.; Robinson, Keith (1945). "Structure of kaolinite". Nature. 156 (3970): 661–662. Bibcode:1945Natur.156R.661B. doi:10.1038/156661b0. ISSN   1476-4687. S2CID   4054610.
  118. Megaw, Helen (1945). "Crystal Structure of Barium Titanate". Nature. 155 (3938): 484–485. doi:10.1038/155484b0. ISSN   0028-0836.
  119. Wells, A.F. (1945). Structural inorganic chemistry, Clarendon Press, Oxford, 590pp. OCLC   1319058.
  120. Kamminga, H. (1989). "The International Union of Crystallography: its formation and early development". Acta Crystallographica Section a Foundations of Crystallography. 45 (9): 581–601. Bibcode:1989AcCrA..45..581K. doi:10.1107/S0108767389003910.
  121. "The Nobel Prize in Chemistry 1946"
  122. Ramsdell, Lewis S. (1947). "Studies on silicon carbide" (PDF). American Mineralogist. 32 (1–2): 64–82. ISSN   0003-004X.
  123. "First General Assembly and International Congress". Acta Crystallographica. 1 (6): 340–343. 1948-12-01. doi:10.1107/s0365110x48000910. ISSN   0365-110X.
  124. "Editorial Preface". Acta Crystallographica. 1 (1): 1–2. 1948. Bibcode:1948AcCry...1....1.. doi:10.1107/S0365110X48000016.
  125. Wollan, E. O.; Shull, C. G. (1948-04-15). "The Diffraction of Neutrons by Crystalline Powders". Physical Review. 73 (8): 830–841. doi:10.1103/PhysRev.73.830. ISSN   0031-899X.
  126. Shull, C. G.; Smart, J. Samuel (1949). "Detection of Antiferromagnetism by Neutron Diffraction". Physical Review. 76 (8): 1256–1257. Bibcode:1949PhRv...76.1256S. doi:10.1103/PhysRev.76.1256.2.
  127. Karle, J.; Hauptman, H. (1950). "The phases and magnitudes of the structure factors". Acta Crystallographica. 3 (3): 181–187. Bibcode:1950AcCry...3..181K. doi:10.1107/S0365110X50000446.
  128. Bijvoet, J. M.; Peerdeman, A. F.; Van Bommel, A. J. (1951). "Determination of the Absolute Configuration of Optically Active Compounds by Means of X-Rays". Nature. 168 (4268): 271–272. Bibcode:1951Natur.168..271B. doi:10.1038/168271a0.
  129. Pauling, Linus; Corey, Robert B.; Branson, H. R. (1951). "The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain". Proceedings of the National Academy of Sciences. 37 (4): 205–211. Bibcode:1951PNAS...37..205P. doi: 10.1073/pnas.37.4.205 . PMC   1063337 . PMID   14816373.
  130. Pauling, Linus; Corey, Robert B. (1951). "The Pleated Sheet, A New Layer Configuration of Polypeptide Chains". Proceedings of the National Academy of Sciences. 37 (5): 251–256. Bibcode:1951PNAS...37..251P. doi: 10.1073/pnas.37.5.251 . PMC   1063350 . PMID   14834147.
  131. Shubnikov, A.V. (1951). Symmetry and antisymmetry of finite figures, Izv. Akad. Nauk SSSR, Moscow (in Russian)
  132. Shubnikov, A.V. and Belov, N.V. (1964). Colored Symmetry , Holser, W.T. (ed.), New York, Pergamon. OCLC   530340
  133. Sayre, D. (1952). "Some implications of a theorem due to Shannon". Acta Crystallographica. 5 (6): 843. Bibcode:1952AcCry...5..843S. doi:10.1107/S0365110X52002276.
  134. Fischer, E. O.; Pfab, W. (1952). "Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen". Zeitschrift für Naturforschung B. 7 (7): 377–379. doi: 10.1515/znb-1952-0701 .
  135. Wilkinson, Geoffrey (1975). "The iron sandwich. A recollection of the first four months". Journal of Organometallic Chemistry. 100: 273–278. doi:10.1016/S0022-328X(00)88947-0.
  136. Magnéli, A. (1953-06-10). "Structures of the ReO3-type with recurrent dislocations of atoms: 'homologous series' of molybdenum and tungsten oxides". Acta Crystallographica. 6 (6): 495–500. Bibcode:1953AcCry...6..495M. doi: 10.1107/S0365110X53001381 . ISSN   0365-110X. S2CID   98622295.
  137. Watson, J. D.; Crick, F. H. C. (1953). "Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid". Nature. 171 (4356): 737–738. Bibcode:1953Natur.171..737W. doi:10.1038/171737a0. PMID   13054692.
  138. Franklin, Rosalind E.; Gosling, R. G. (1953). "Molecular Configuration in Sodium Thymonucleate". Nature. 171 (4356): 740–741. Bibcode:1953Natur.171..740F. doi:10.1038/171740a0. PMID   13054694.
  139. Wilkins, M. H. F.; Stokes, A. R.; Wilson, H. R. (1953). "Molecular Structure of Nucleic Acids: Molecular Structure of Deoxypentose Nucleic Acids". Nature. 171 (4356): 738–740. Bibcode:1953Natur.171..738W. doi:10.1038/171738a0. PMID   13054693.
  140. Ukichiro Nakaya (2013). Snow crystals. Cambridge: Harvard Univ Press. ISBN   978-0-674-18276-9. OCLC   900567451.
  141. "The Nobel Prize in Chemistry 1954"
  142. Cruickshank, D. W. J. (1956-09-01). "The analysis of the anisotropic thermal motion of molecules in crystals". Acta Crystallographica. 9 (9): 754–756. Bibcode:1956AcCry...9..754C. doi:10.1107/s0365110x56002047. ISSN   0365-110X.
  143. Dunitz, J. D.; Orgel, L. E.; Rich, A. (1956-04-10). "The crystal structure of ferrocene". Acta Crystallographica. 9 (4): 373–375. doi:10.1107/S0365110X56001091.
  144. Wilkinson, Geoffrey; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. (1952). "THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL". Journal of the American Chemical Society. 74 (8): 2125–2126. doi:10.1021/ja01128a527. ISSN   0002-7863.
  145. "The direct study by electron microscopy of crystal lattices and their imperfections". Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 236 (1204): 119–135. 1956. doi:10.1098/rspa.1956.0117. ISSN   0080-4630.
  146. Kendrew, J. C.; Dickerson, R. E.; Strandberg, B. E.; Hart, R. G.; Davies, D. R.; Phillips, D. C.; Shore, V. C. (1960). "Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution". Nature. 185 (4711): 422–427. Bibcode:1960Natur.185..422K. doi:10.1038/185422a0. PMID   18990802.
  147. Perutz, M. F.; Rossmann, M. G.; Cullis, ANN F.; Muirhead, Hilary; Will, Georg; North, A. C. T. (1960). "Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis". Nature. 185 (4711): 416–422. Bibcode:1960Natur.185..416P. doi:10.1038/185416a0. PMID   18990801.
  148. Scheibner, E. J.; Germer, L. H.; Hartman, C. D. (1960-02-01). "Apparatus for Direct Observation of Low-Energy Electron Diffraction Patterns". Review of Scientific Instruments. 31 (2): 112–114. doi:10.1063/1.1716903. ISSN   0034-6748.
  149. Germer, L. H.; Hartman, C. D. (1960-07-01). "Improved Low Energy Electron Diffraction Apparatus". Review of Scientific Instruments. 31 (7): 784–784. doi:10.1063/1.1717051. ISSN   0034-6748.
  150. Germer, Lester H. (1965). "The Structure of Crystal Surfaces". Scientific American. 212 (3): 32–41. ISSN   0036-8733.
  151. Mackay, A. L. (1962-09-01). "A dense non-crystallographic packing of equal spheres". Acta Crystallographica. 15 (9): 916–918. doi:10.1107/S0365110X6200239X. ISSN   0365-110X.
  152. Rossmann, M. G.; Blow, D. M. (1962). "The detection of sub-units within the crystallographic asymmetric unit". Acta Crystallographica. 15 (1): 24–31. Bibcode:1962AcCry..15...24R. doi:10.1107/S0365110X62000067.
  153. "The Nobel Prize in Chemistry 1962"
  154. "The Nobel Prize in Medicine 1962"
  155. Karle, I. L.; Karle, J. (1963). "An application of a new phase determination procedure to the structure of cyclo(hexaglycyl)demihydrate". Acta Crystallographica. 16 (10): 969–975. Bibcode:1963AcCry..16..969K. doi:10.1107/S0365110X63002607.
  156. "The Nobel Prize in Chemistry 1964"
  157. Blake, C. C. F.; Koenig, D. F.; Mair, G. A.; North, A. C. T.; Phillips, D. C.; Sarma, V. R. (1965). "Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution". Nature. 206 (4986): 757–761. Bibcode:1965Natur.206..757B. doi:10.1038/206757a0. PMID   5891407.
  158. Johnson, Louise N.; Phillips, D. C. (1965). "Structure of Some Crystalline Lysozyme-Inhibitor Complexes Determined by X-Ray Analysis at 6 Å Resolution". Nature. 206 (4986): 761–763. Bibcode:1965Natur.206..761J. doi:10.1038/206761a0. PMID   5840126.
  159. Kennard, Olga. "From private data to public knowledge" (PDF).
  160. "History of the CCDC timeline | CCDC". www.ccdc.cam.ac.uk. Retrieved 2024-05-11.
  161. Rietveld, H. M. (1967). "Line profiles of neutron powder-diffraction peaks for structure refinement". Acta Crystallographica. 22 (1): 151–152. Bibcode:1967AcCry..22..151R. doi:10.1107/S0365110X67000234.
  162. De Rosier, D. J.; Klug, A. (1968). "Reconstruction of Three Dimensional Structures from Electron Micrographs". Nature. 217 (5124): 130–134. Bibcode:1968Natur.217..130D. doi:10.1038/217130a0. PMID   23610788.
  163. Blundell, T. L.; Cutfield, J. F.; Cutfield, S. M.; Dodson, E. J.; Dodson, G. G.; Hodgkin, D. C.; Mercola, D. A.; Vijayan, M. (1971). "Atomic Positions in Rhombohedral 2-Zinc Insulin Crystals". Nature. 231 (5304): 506–511. Bibcode:1971Natur.231..506B. doi:10.1038/231506a0. PMID   4932997.
  164. Crewe, A. V.; Wall, J.; Langmore, J. (1970). "Visibility of Single Atoms". Science. 168 (3937): 1338–1340. doi:10.1126/science.168.3937.1338. ISSN   0036-8075.
  165. "Crystallography: Protein Data Bank". Nature New Biology. 233 (42): 223. 1971. doi:10.1038/newbio233223b0.
  166. Meyer, Edgar F. (1971). "Interactive Computer Display for the Three Dimensional Study of Macromolecular Structures". Nature. 232 (5308): 255–257. Bibcode:1971Natur.232..255M. doi:10.1038/232255a0. PMID   4937078.
  167. Rosenbaum, G.; Holmes, K. C.; Witz, J. (1971-04-16). "Synchrotron Radiation as a Source for X-ray Diffraction". Nature. 230 (5294): 434–437. doi:10.1038/230434a0. ISSN   0028-0836.
  168. Holmes, K. C.; Rosenbaum, G. (1998-05-01). "How X-ray Diffraction with Synchrotron Radiation Got Started". Journal of Synchrotron Radiation. 5 (3): 147–153. doi:10.1107/S0909049597018578. ISSN   0909-0495.
  169. Allpress, J. G.; Hewat, E. A.; Moodie, A. F.; Sanders, J. V. (1972). "n -Beam lattice images. I. Experimental and computed images from W 4 Nb 26 O 77". Acta Crystallographica Section A. 28 (6): 528–536. doi:10.1107/S0567739472001433. ISSN   0567-7394.
  170. Kim, S. H.; Quigley, G. J.; Suddath, F. L.; McPherson, A.; Sneden, D.; Kim, J. J.; Weinzierl, J.; Rich, Alexander (1973). "Three-Dimensional Structure of Yeast Phenylalanine Transfer RNA: Folding of the Polynucleotide Chain". Science. 179 (4070): 285–288. Bibcode:1973Sci...179..285K. doi:10.1126/science.179.4070.285. PMID   4566654.
  171. "The Nobel Prize in Chemistry 1973"
  172. "The Nobel Prize in Chemistry 1976"
  173. Delaunay, B. (1933). "Neue Darstellung der geometrischen Kristallographie". Zeitschrift für Kristallographie - Crystalline Materials. 84 (1–6): 109–149. doi:10.1524/zkri.1933.84.1.109.
  174. Delone, B.N., Dolbilin, N.P., Shtogrin, M.I. and Galiulin, R.V. (1976). A local criterion for regularity of a system of points, Sov. Math. Dokl., 17, 319-322
  175. Harrison, S. C.; Olson, A. J.; Schutt, C. E.; Winkler, F. K.; Bricogne, G. (1978). "Tomato bushy stunt virus at 2.9 Å resolution". Nature. 276 (5686): 368–373. Bibcode:1978Natur.276..368H. doi:10.1038/276368a0. PMID   19711552.
  176. Bergerhoff, G.; Hundt, R.; Sievers, R.; Brown, I. D. (1983-05-01). "The inorganic crystal structure data base". Journal of Chemical Information and Computer Sciences. 23 (2): 66–69. doi:10.1021/ci00038a003. ISSN   0095-2338.
  177. Hellenbrandt, Mariette (2004). "The Inorganic Crystal Structure Database (ICSD)—Present and Future". Crystallography Reviews. 10 (1): 17–22. doi:10.1080/08893110410001664882. ISSN   0889-311X.
  178. "Gregori Aminoff Prize"
  179. Marra, W. C.; Eisenberger, P.; Cho, A. Y. (1979-11-01). "X-ray total-external-reflection–Bragg diffraction: A structural study of the GaAs-Al interface". Journal of Applied Physics. 50 (11): 6927–6933. doi:10.1063/1.325845. ISSN   0021-8979.
  180. Karle, Jerome (2009). "Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology". International Journal of Quantum Chemistry. 18: 357–367. doi:10.1002/qua.560180734.
  181. "The Nobel Prize in Chemistry 1982"
  182. doi : 10.1016/0079-6107(83)90026-3.
  183. Helliwell, John R. (2001). "New opportunities in biological and chemical crystallography". Journal of Synchrotron Radiation. 9 (Pt 1): 1–8. doi:10.1107/S0909049501018465. PMID   11779939.
  184. Robinson, I. K. (1983). "Direct Determination of the Au(110) Reconstructed Surface by X-Ray Diffraction". Physical Review Letters. 50 (15): 1145–1148. doi:10.1103/PhysRevLett.50.1145. ISSN   0031-9007.
  185. Marks, L. D. (1983-09-12). "Direct Imaging of Carbon-Covered and Clean Gold (110) Surfaces". Physical Review Letters. 51 (11): 1000–1002. doi:10.1103/PhysRevLett.51.1000. ISSN   0031-9007.
  186. Binnig, G.; Rohrer, H.; Gerber, Ch.; Weibel, E. (1982). "Surface Studies by Scanning Tunneling Microscopy". Physical Review Letters. 49 (1): 57–61. doi:10.1103/PhysRevLett.49.57. ISSN   0031-9007.
  187. Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. (1984). "Metallic Phase with Long-Range Orientational Order and No Translational Symmetry". Physical Review Letters. 53 (20): 1951–1953. Bibcode:1984PhRvL..53.1951S. doi:10.1103/PhysRevLett.53.1951.
  188. Richmond, T. J.; Finch, J. T.; Rushton, B.; Rhodes, D.; Klug, A. (1984). "Structure of the nucleosome core particle at 7 Å resolution". Nature. 311 (5986): 532–537. Bibcode:1984Natur.311..532R. doi:10.1038/311532a0. PMID   6482966.
  189. "The Nobel Prize in Chemistry 1985"
  190. Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. (1985). "Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution". Nature. 318 (6047): 618–624. Bibcode:1985Natur.318..618D. doi:10.1038/318618a0. PMID   22439175.
  191. Takayanagi, K.; Tanishiro, Y.; Takahashi, M.; Takahashi, S. (1985). "Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 3 (3): 1502–1506. Bibcode:1985JVSTA...3.1502T. doi:10.1116/1.573160. ISSN   0734-2101.
  192. Takayanagi, Kunio; Tanishiro, Yasumasa; Takahashi, Shigeki; Takahashi, Masaetsu (1985). "Structure analysis of Si(111)-7 × 7 reconstructed surface by transmission electron diffraction". Surface Science. 164 (2–3): 367–392. doi:10.1016/0039-6028(85)90753-8. ISSN   0039-6028.
  193. "The Nobel Prize in Physics 1986"
  194. "First Ewald Prize"
  195. Bjorkman, P. J.; Saper, M. A.; Samraoui, B.; Bennett, W. S.; Strominger, J. L.; Wiley, D. C. (1987). "Structure of the human class I histocompatibility antigen, HLA-A2". Nature. 329 (6139): 506–512. Bibcode:1987Natur.329..506B. doi:10.1038/329506a0. PMID   3309677.
  196. Ploegh, Hidde L. (2002). "Don Craig Wiley (1944–2001)". Nature. 415 (6871): 492. doi:10.1038/415492a. PMID   11823846.
  197. "The Nobel Prize in Chemistry 1988"
  198. Desiraju, G.R. (1989). Crystal engineering: the design of organic solids, Elsevier, Amsterdam, 312pp. ISBN   9780444874573
  199. Weiss, M. S.; Abele, U.; Weckesser, J.; Welte, W.; Schiltz, E.; Schulz, G. E. (1991). "Molecular Architecture and Electrostatic Properties of a Bacterial Porin". Science. 254 (5038): 1627–1630. Bibcode:1991Sci...254.1627W. doi:10.1126/science.1721242. PMID   1721242.
  200. Iijima, Sumio (1991). "Helical microtubules of graphitic carbon". Nature. 354 (6348): 56–58. doi:10.1038/354056a0. ISSN   0028-0836.
  201. "Report of the Executive Committee for 1991". Acta Crystallographica Section A. 48 (6): 922–946. 1992. Bibcode:1992AcCrA..48..922.. doi: 10.1107/S0108767392008328 .
  202. Brünger, Axel T.; Kuriyan, John; Karplus, Martin (1987). "Crystallographic R Factor Refinement by Molecular Dynamics". Science. 235 (4787): 458–460. Bibcode:1987Sci...235..458B. doi:10.1126/science.235.4787.458. PMID   17810339.
  203. Brünger, A. T.; Adams, P. D.; Clore, G. M.; Delano, W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J. S.; Kuszewski, J.; Nilges, M.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; Warren, G. L. (1998). "Crystallography & NMR System: A New Software Suite for Macromolecular Structure Determination". Acta Crystallographica Section D Biological Crystallography. 54 (5): 905–921. Bibcode:1998AcCrD..54..905B. doi:10.1107/s0907444998003254. PMID   9757107.
  204. Abrahams, Jan Pieter; Leslie, Andrew G. W.; Lutter, René; Walker, John E. (1994). "Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria". Nature. 370 (6491): 621–628. doi:10.1038/370621a0. PMID   8065448.
  205. Vincent, R.; Midgley, P.A. (1994). "Double conical beam-rocking system for measurement of integrated electron diffraction intensities". Ultramicroscopy. 53 (3): 271–282. doi:10.1016/0304-3991(94)90039-6.
  206. "The Nobel Prize in Chemistry 1994"
  207. Pressprich, Mark R.; White, Mark A.; Vekhter, Yanina; Coppens, Philip (1994). "Analysis of a metastable electronic excited state of sodium nitroprusside by X-ray crystallography". Journal of the American Chemical Society. 116 (12): 5233–5238. doi:10.1021/ja00091a030. ISSN   0002-7863.
  208. Dorset, D.L. (1995). Structural electron crystallography, Plenum, New York, 452pp. ISBN   9781475766219
  209. "About the Bilbao Crystallographic Server - BCS Wiki". www.cryst.ehu.es. Retrieved 2024-05-06.
  210. Aroyo, Mois Ilia; Perez-Mato, Juan Manuel; Capillas, Cesar; Kroumova, Eli; Ivantchev, Svetoslav; Madariaga, Gotzon; Kirov, Asen; Wondratschek, Hans (2006-01-01). "Bilbao Crystallographic Server: I. Databases and crystallographic computing programs". Zeitschrift für Kristallographie - Crystalline Materials. 221 (1): 15–27. doi:10.1524/zkri.2006.221.1.15. ISSN   2196-7105.
  211. doi : 10.1126/science.277.5332.167
  212. "The Nobel Prize in Chemistry 1997"
  213. Nogales, Eva; Wolf, Sharon G.; Downing, Kenneth H. (1998). "Structure of the αβ tubulin dimer by electron crystallography". Nature. 391 (6663): 199–203. Bibcode:1998Natur.391..199N. doi:10.1038/34465. PMID   9428769.
  214. Nogales, Eva; Whittaker, Michael; Milligan, Ronald A.; Downing, Kenneth H. (1999). "High-Resolution Model of the Microtubule". Cell. 96 (1): 79–88. doi: 10.1016/s0092-8674(00)80961-7 . PMID   9989499.
  215. Gjønnes, J.; Hansen, V.; Berg, B. S.; Runde, P.; Cheng, Y. F.; Gjønnes, K.; Dorset, D. L.; Gilmore, C. J. (1998-05-01). "Structure Model for the Phase AlmFe Derived from Three-Dimensional Electron Diffraction Intensity Data Collected by a Precession Technique. Comparison with Convergent-Beam Diffraction". Acta Crystallographica Section A Foundations of Crystallography. 54 (3): 306–319. doi:10.1107/S0108767397017030.
  216. Miao, Jianwei; Charalambous, Pambos; Kirz, Janos; Sayre, David (1999). "Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens". Nature. 400 (6742): 342–344. Bibcode:1999Natur.400..342M. doi:10.1038/22498.
  217. Miao, Jianwei; Ishikawa, Tetsuya; Robinson, Ian K.; Murnane, Margaret M. (2015). "Beyond crystallography: Diffractive imaging using coherent x-ray light sources". Science. 348 (6234): 530–535. Bibcode:2015Sci...348..530M. doi:10.1126/science.aaa1394. PMID   25931551.
  218. Neutze, Richard; Wouts, Remco; Van Der Spoel, David; Weckert, Edgar; Hajdu, Janos (2000). "Potential for biomolecular imaging with femtosecond X-ray pulses". Nature. 406 (6797): 752–757. Bibcode:2000Natur.406..752N. doi:10.1038/35021099. PMID   10963603.
  219. Yusupov, Marat M.; Yusupova, Gulnara Zh.; Baucom, Albion; Lieberman, Kate; Earnest, Thomas N.; Cate, J. H. D.; Noller, Harry F. (2001). "Crystal Structure of the Ribosome at 5.5 Å Resolution". Science. 292 (5518): 883–896. Bibcode:2001Sci...292..883Y. doi:10.1126/science.1060089. PMID   11283358.
  220. Cramer, Patrick; Bushnell, David A.; Kornberg, Roger D. (2001). "Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution". Science. 292 (5523): 1863–1876. Bibcode:2001Sci...292.1863C. doi:10.1126/science.1059493. hdl: 11858/00-001M-0000-0015-8729-F . PMID   11313498.
  221. Gnatt, Averell L.; Cramer, Patrick; Fu, Jianhua; Bushnell, David A.; Kornberg, Roger D. (2001). "Structural Basis of Transcription: An RNA Polymerase II Elongation Complex at 3.3 Å Resolution". Science. 292 (5523): 1876–1882. Bibcode:2001Sci...292.1876G. doi:10.1126/science.1059495. hdl: 11858/00-001M-0000-0015-8723-C . PMID   11313499.
  222. Ayvazyan, V.; Baboi, N.; Bähr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bohnet, I.; Bolzmann, A.; Brinkmann, R.; Brovko, O. I.; Carneiro, J. P.; Casalbuoni, S.; Castellano, M.; Castro, P.; Catani, L. (2006). "First operation of a free-electron laser generating GW power radiation at 32 nm wavelength". The European Physical Journal D. 37 (2): 297–303. doi:10.1140/epjd/e2005-00308-1. ISSN   1434-6060.
  223. Kolb, U.; Gorelik, T.; Kübel, C.; Otten, M.T.; Hubert, D. (2007). "Towards automated diffraction tomography: Part I—Data acquisition". Ultramicroscopy. 107 (6–7): 507–513. doi:10.1016/j.ultramic.2006.10.007.
  224. Kolb, U.; Gorelik, T.; Otten, M.T. (2008). "Towards automated diffraction tomography. Part II—Cell parameter determination". Ultramicroscopy. 108 (8): 763–772. doi:10.1016/j.ultramic.2007.12.002.
  225. Kolb, U.; Mugnaioli, E.; Gorelik, T. E. (2011). "Automated electron diffraction tomography – a new tool for nano crystal structure analysis". Crystal Research and Technology. 46 (6): 542–554. doi:10.1002/crat.201100036. ISSN   0232-1300.
  226. Rasmussen, Søren G. F.; Choi, Hee-Jung; Rosenbaum, Daniel M.; Kobilka, Tong Sun; Thian, Foon Sun; Edwards, Patricia C.; Burghammer, Manfred; Ratnala, Venkata R. P.; Sanishvili, Ruslan; Fischetti, Robert F.; Schertler, Gebhard F. X.; Weis, William I.; Kobilka, Brian K. (2007). "Crystal structure of the human β2 adrenergic G-protein-coupled receptor". Nature. 450 (7168): 383–387. doi:10.1038/nature06325. PMID   17952055.
  227. Cherezov, Vadim; Rosenbaum, Daniel M.; Hanson, Michael A.; Rasmussen, Søren G. F.; Thian, Foon Sun; Kobilka, Tong Sun; Choi, Hee-Jung; Kuhn, Peter; Weis, William I.; Kobilka, Brian K.; Stevens, Raymond C. (2007). "High-Resolution Crystal Structure of an Engineered Human β 2 -Adrenergic G Protein–Coupled Receptor". Science. 318 (5854): 1258–1265. Bibcode:2007Sci...318.1258C. doi:10.1126/science.1150577. PMC   2583103 . PMID   17962520.
  228. Emma, P. (2009). "First Lasing of the LCLS X-Ray FEL at 1.5 Å". Proceedings of the 2009 Particle Accelerator Conference.
  229. Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Fisher, A.; Frisch, J. (2010-08-01). "First lasing and operation of an ångstrom-wavelength free-electron laser". Nature Photonics. 4 (9): 641–647. doi:10.1038/nphoton.2010.176. ISSN   1749-4885.
  230. "The Nobel Prize in Chemistry 2009"
  231. Dolomanov, Oleg V.; Bourhis, Luc J.; Gildea, Richard J.; Howard, Judith A. K.; Puschmann, Horst (2009). "OLEX2: A complete structure solution, refinement and analysis program". Journal of Applied Crystallography. 42 (2): 339–341. doi:10.1107/S0021889808042726.
  232. Van Aert, Sandra; Batenburg, Kees J.; Rossell, Marta D.; Erni, Rolf; Van Tendeloo, Gustaaf (2011-02-02). "Three-dimensional atomic imaging of crystalline nanoparticles". Nature. 470 (7334): 374–377. Bibcode:2011Natur.470..374V. doi:10.1038/nature09741. ISSN   0028-0836. PMID   21289625. S2CID   4310850.
  233. "The Nobel Prize in Chemistry 2011"
  234. Chapman, Henry N.; et al. (2011). "Femtosecond X-ray protein nanocrystallography". Nature. 470 (7332): 73–77. Bibcode:2011Natur.470...73C. doi:10.1038/nature09750. PMC   3429598 . PMID   21293373.
  235. Scott, M. C.; Chen, Chien-Chun; Mecklenburg, Matthew; Zhu, Chun; Xu, Rui; Ercius, Peter; Dahmen, Ulrich; Regan, B. C.; Miao, Jianwei (2012). "Electron tomography at 2.4-ångström resolution". Nature. 483 (7390): 444–447. Bibcode:2012Natur.483..444S. doi:10.1038/nature10934. PMID   22437612.
  236. Miao, Jianwei; Ercius, Peter; Billinge, Simon J. L. (2016). "Atomic electron tomography: 3D structures without crystals". Science. 353 (6306). doi:10.1126/science.aaf2157. PMID   27708010.
  237. Shi, Dan; Nannenga, Brent L; Iadanza, Matthew G; Gonen, Tamir (2013-11-19). "Three-dimensional electron crystallography of protein microcrystals". eLife. 2: e01345. doi: 10.7554/eLife.01345 . ISSN   2050-084X. PMC   3831942 . PMID   24252878.
  238. Giacovazzo, Carmelo (2014). Phasing in crystallography: a modern perspective. IUCr texts on crystallography. Oxford: Oxford university press. ISBN   978-0-19-968699-5.
  239. "The International Year of Crystallography 2014".
  240. Palatinus, L.; Brázda, P.; Boullay, P.; Perez, O.; Klementová, M.; Petit, S.; Eigner, V.; Zaarour, M.; Mintova, S. (2017-01-13). "Hydrogen positions in single nanocrystals revealed by electron diffraction". Science. 355 (6321): 166–169. Bibcode:2017Sci...355..166P. doi:10.1126/science.aak9652. ISSN   0036-8075. PMID   28082587.
  241. McCusker, Lynne B. (2017-01-13). "Electron diffraction and the hydrogen atom". Science. 355 (6321): 136. Bibcode:2017Sci...355..136M. doi:10.1126/science.aal4570. ISSN   0036-8075. PMID   28082549.
  242. "The Nobel Prize in Chemistry 2017"
  243. "A million thanks | CCDC". www.ccdc.cam.ac.uk. Retrieved 2024-03-27.
  244. Taylor, Robin; Wood, Peter A. (2019-08-28). "A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts". Chemical Reviews. 119 (16): 9427–9477. doi: 10.1021/acs.chemrev.9b00155 . ISSN   0009-2665. PMID   31244003.
  245. Herzik Jr, Mark A. (2020-11-05). "Cryo-electron microscopy reaches atomic resolution". Nature. 587 (7832): 39–40. doi:10.1038/d41586-020-02924-y. ISSN   0028-0836.
  246. Yip, Ka Man; Fischer, Niels; Paknia, Elham; Chari, Ashwin; Stark, Holger (2020-11-05). "Atomic-resolution protein structure determination by cryo-EM". Nature. 587 (7832): 157–161. doi:10.1038/s41586-020-2833-4. ISSN   0028-0836.
  247. Nakane, Takanori; Kotecha, Abhay; Sente, Andrija; McMullan, Greg; Masiulis, Simonas; Brown, Patricia M. G. E.; Grigoras, Ioana T.; Malinauskaite, Lina; Malinauskas, Tomas; Miehling, Jonas; Uchański, Tomasz; Yu, Lingbo; Karia, Dimple; Pechnikova, Evgeniya V.; de Jong, Erwin (2020-11-05). "Single-particle cryo-EM at atomic resolution". Nature. 587 (7832): 152–156. doi:10.1038/s41586-020-2829-0. ISSN   0028-0836. PMC   7611073 . PMID   33087931.
  248. Libbrecht, Kenneth G. (2021-12-09). "Snow Crystals". arXiv: 1910.06389 [cond-mat.mtrl-sci].
  249. Aubrey, Dan (2022-01-12). "Off the Presses: Kenneth Libbrecht's 'Snow Crystals'". Community News. Retrieved 2024-03-26.

Further reading

Crystallography before 20th century

Crystallography in the 20th century

History of X-ray crystallography

History of electron crystallography

History of neutron crystallography

History of structure determination

History of macromolecular crystallography

History of crystallographic organizations