This article needs additional citations for verification .(February 2024) |
Millennium: | 1st millennium |
---|---|
Centuries: | |
Decades: | |
Years: |
459 by topic |
---|
Leaders |
Categories |
Gregorian calendar | 459 CDLIX |
Ab urbe condita | 1212 |
Assyrian calendar | 5209 |
Balinese saka calendar | 380–381 |
Bengali calendar | −134 |
Berber calendar | 1409 |
Buddhist calendar | 1003 |
Burmese calendar | −179 |
Byzantine calendar | 5967–5968 |
Chinese calendar | 戊戌年 (Earth Dog) 3156 or 2949 — to — 己亥年 (Earth Pig) 3157 or 2950 |
Coptic calendar | 175–176 |
Discordian calendar | 1625 |
Ethiopian calendar | 451–452 |
Hebrew calendar | 4219–4220 |
Hindu calendars | |
- Vikram Samvat | 515–516 |
- Shaka Samvat | 380–381 |
- Kali Yuga | 3559–3560 |
Holocene calendar | 10459 |
Iranian calendar | 163 BP – 162 BP |
Islamic calendar | 168 BH – 167 BH |
Javanese calendar | 344–345 |
Julian calendar | 459 CDLIX |
Korean calendar | 2792 |
Minguo calendar | 1453 before ROC 民前1453年 |
Nanakshahi calendar | −1009 |
Seleucid era | 770/771 AG |
Thai solar calendar | 1001–1002 |
Tibetan calendar | 阳土狗年 (male Earth-Dog) 585 or 204 or −568 — to — 阴土猪年 (female Earth-Pig) 586 or 205 or −567 |
Year 459 ( CDLIX ) was a common year starting on Thursday of the Julian calendar. At the time, it was known in the Roman Empire as the Year of the Consulship of Ricimer and Patricius (or, less frequently, year 1212 Ab urbe condita ). The denomination 459 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years.
• Total lunar eclipse on May 3, in which totality was for 106 minutes and 32 seconds. A totality of this length will not occur until August 19, 4763. [1]
A calendar is a system of organizing days. This is done by giving names to periods of time, typically days, weeks, months and years. A date is the designation of a single and specific day within such a system. A calendar is also a physical record of such a system. A calendar can also mean a list of planned events, such as a court calendar, or a partly or fully chronological list of documents, such as a calendar of wills.
The 430s decade ran from January 1, 430, to December 31, 439.
The 480s decade ran from January 1, 480, to December 31, 489.
Year 431 (CDXXXI) was a common year starting on Thursday of the Julian calendar. At the time, it was known as the Year of the Consulship of Bassus and Antiochus. The denomination 431 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years.
The 450s decade ran from January 1, 450, to December 31, 459.
The 440s decade ran from January 1, 440, to December 31, 449.
Year 455 (CDLV) was a common year starting on Saturday of the Julian calendar. At the time, it was known as the Year of the Consulship of Valentinianus and Anthemius. The denomination 455 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years.
Year 435 (CDXXXV) was a common year starting on Tuesday of the Julian calendar. At the time, it was known in Rome as the Year of the Consulship of Theodosius and Valentinianus. The denomination 435 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years.
The Baily's beads, diamond ring or more rarely double diamond ring effects, are features of total and annular solar eclipses. Although caused by the same phenomenon, they are distinct events during these types of solar eclipses. As the Moon covers the Sun during a solar eclipse, the rugged topography of the lunar limb allows beads of sunlight to shine through in some places while not in others. They are named for Francis Baily, who explained the effects in 1836. The diamond ring effects are seen when only one or two beads are left, appearing as shining "diamonds" set in a bright ring around the lunar silhouette.
A total solar eclipse occurred at the Moon's descending node of orbit between Sunday, July 11 and Monday, July 12, 2010, with a magnitude of 1.058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Friday, August 1, 2008, with a magnitude of 1.0394. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 2, 2019, with a magnitude of 1.0459. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's and the apparent path of the Sun and Moon intersect, blocking all direct sunlight and turning daylight into darkness; the Sun appears to be black with a halo around it. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.4 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse will occur at the Moon's descending node of orbit on Monday, March 20, 2034, with a magnitude of 1.0458. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's descending node of orbit between Monday, August 22 and Tuesday, August 23, 2044, with a magnitude of 1.0364. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 13 hours after perigee, the Moon's apparent diameter will be larger.
A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, 22 July 2028, with a magnitude of 1.056. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days before perigee, the Moon's apparent diameter will be larger.
A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, June 8 and Sunday, June 9, 1918, with a magnitude of 1.0292. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring 3.7 days after perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 19, 1887, with a magnitude of 1.0518. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Monday, April 28, 1930, with a magnitude of 1.0003. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.2 days after apogee and 6 days before perigee.
A total solar eclipse occurred at the Moon's descending node of orbit on Friday, August 21, 1914, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.7 days before perigee, the Moon's apparent diameter was larger.