APOBEC3A | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | APOBEC3A , A3A, ARP3, PHRBN, bK150C2.1, apolipoprotein B mRNA editing enzyme catalytic subunit 3A | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 607109 HomoloGene: 82288 GeneCards: APOBEC3A | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A, also known as APOBEC3A, or A3A is a gene of the APOBEC3 family found in humans, non-human primates, and some other mammals. [3] It is a single-domain DNA cytidine deaminase with antiviral effects. While other members of the family such as APOBEC3G are believed to act by editing ssDNA by removing an amino group from cytosine in DNA, introducing a cytosine to uracil change which can ultimately lead to a cytosine to thymine mutation, one study suggests that APOBEC3A can inhibit parvoviruses by another mechanism. [4] The cellular function of APOBEC3A is likely to be the destruction of foreign DNA through extensive deamination of cytosine.Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS (February 2010). "APOBEC3 proteins mediate the clearance of foreign DNA from human cells". Nature Structural & Molecular Biology. 17 (2): 222–9. doi:10.1038/nsmb.1744. PMC 2921484 . PMID 20062055.
This gene is a member of the polynucleotide cytosine deaminase gene family. It is one of seven related genes or pseudogenes found in a cluster, thought to result from gene duplication, on chromosome 22. Members of the cluster encode proteins that are structurally and functionally related to the C to U RNA-editing cytidine deaminase APOBEC1. The APOBEC3 family of DNA editing enzymes are thought to be part of the innate immune system by restricting retroviruses, mobile genetic elements like retrotransposons and endogenous retroviruses. In addition, APOBEC3A is an important restrictive factor for HIV-1 and other retroviruses such as murine leukemia virus, [5] [6]
The basic structure APOBEC3A consists of a 5 stranded central β-sheet surrounded by 6 α-helices and a single catalytically active zinc finger domain. Similar to all APOBEC3 catalytic domains, the domain is a HAEx28Cx2-4C zinc binding motif. In such motifs, histidine residues (or cysteine residues in RNA cytidine deaminases) coordinate the zinc ion while a glutamic acid stabilizes the transition state and the proton shuttle. The zinc ion, in this case, is specifically coordinated by residues H70, C101 and C106. [7] [8] [9] [10]
Single stranded DNA, abbreviated ssDNA, is the substrate that is catalyzed in the C→U deamination reaction of APOBEC3A.
A3A has the highest catalytic activity among the APOBEC3 protein family. [11]
A3A was first found to induce an alternative form of the mRNA editing, G>A, in Wilms' Tumor-1 (WT1) mRNA in cord blood mononuclear cells, particularly in the genomic polymorphic sites, apparently reflecting an amination process rather than a de-amination one. [12] This was soon followed by a study showing A3A induce canonical widespread C>U mRNA editing in human monocytes and macrophages. [13]
APOBEC3A functions best at an acidic pH, with maximal catalytic activity at pH 5.5. [14] [15] Another protein of the APOBEC family very similar to A3A, APOBEC3B, showed little activity at pH 4.5 and 4.0 and a similar assumption can be made of A3A activity at these lower pH levels. [15]
A3A affinity for ssDNA is also pH dependent and closely correlated to the deamination activity of APOBEC3A. The enzyme has the highest affinity for ssDNA at pH 5.5 demonstrating that A3A's maximal catalytic activity and highest affinity for ssDNA occur at a similar pH. [16]
A3A has become an increasingly widely studied A3 because of its high catalytic activity compared to its family members and its relatively unknown mechanisms compared to more popular APOBEC3's such as APOBEC3G.
The binding of APOBEC3A to its substrate ssDNA is highly dependent on its surrounding nucleotides. The specificity for binding to its target deoxycytidine increases more than ten-fold when the target deoxycytidine is surrounded by deoxythymidine nucleotides. [16]
Cytosine is one of the four nucleobases found in DNA and RNA, along with adenine, guanine, and thymine. It is a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached. The nucleoside of cytosine is cytidine. In Watson-Crick base pairing, it forms three hydrogen bonds with guanine.
Deamination is the removal of an amino group from a molecule. Enzymes that catalyse this reaction are called deaminases.
Activation-induced cytidine deaminase, also known as AICDA, AID and single-stranded DNA cytosine deaminase, is a 24 kDa enzyme which in humans is encoded by the AICDA gene. It creates mutations in DNA by deamination of cytosine base, which turns it into uracil. In other words, it changes a C:G base pair into a U:G mismatch. The cell's DNA replication machinery recognizes the U as a T, and hence C:G is converted to a T:A base pair. During germinal center development of B lymphocytes, AID also generates other types of mutations, such as C:G to A:T. The mechanism by which these other mutations are created is not well understood. It is a member of the APOBEC family.
RNA editing is a molecular process through which some cells can make discrete changes to specific nucleotide sequences within an RNA molecule after it has been generated by RNA polymerase. It occurs in all living organisms and is one of the most evolutionarily conserved properties of RNAs. RNA editing may include the insertion, deletion, and base substitution of nucleotides within the RNA molecule. RNA editing is relatively rare, with common forms of RNA processing not usually considered as editing. It can affect the activity, localization as well as stability of RNAs, and has been linked with human diseases.
APOBEC3G is a human enzyme encoded by the APOBEC3G gene that belongs to the APOBEC superfamily of proteins. This family of proteins has been suggested to play an important role in innate anti-viral immunity. APOBEC3G belongs to the family of cytidine deaminases that catalyze the deamination of cytidine to uridine in the single stranded DNA substrate. The C-terminal domain of A3G renders catalytic activity, several NMR and crystal structures explain the substrate specificity and catalytic activity.
Missense mRNA is a messenger RNA bearing one or more mutated codons that yield polypeptides with an amino acid sequence different from the wild-type or naturally occurring polypeptide. Missense mRNA molecules are created when template DNA strands or the mRNA strands themselves undergo a missense mutation in which a protein coding sequence is mutated and an altered amino acid sequence is coded for.
The double-stranded RNA-specific adenosine deaminase enzyme family are encoded by the ADAR family genes. ADAR stands for adenosine deaminase acting on RNA. This article focuses on the ADAR proteins; This article details the evolutionary history, structure, function, mechanisms and importance of all proteins within this family.
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 also known as C->U-editing enzyme APOBEC-1 is a protein that in humans is encoded by the APOBEC1 gene.
Cytidine deaminase is an enzyme that in humans is encoded by the CDA gene.
DNA dC->dU-editing enzyme APOBEC-3F is a protein that in humans is encoded by the APOBEC3F gene.
DNA dC->dU-editing enzyme APOBEC-3C is a protein that in humans is encoded by the APOBEC3C gene.
Probable C->U-editing enzyme APOBEC-2 is a protein that in humans is encoded by the APOBEC2 gene.
Probable DNA dC->dU-editing enzyme APOBEC-3B is a protein that in humans is encoded by the APOBEC3B gene.
Probable DNA dC->dU-editing enzyme APOBEC-3D is a protein that in humans is encoded by the APOBEC3D gene.
APOBEC is a family of evolutionarily conserved cytidine deaminases.
DNA dC->dU-editing enzyme APOBEC-3H, also known as Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3H or APOBEC-related protein 10, is a protein that in humans is encoded by the APOBEC3H gene.
C->U-editing enzyme APOBEC-4, also known as Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 4, is a protein that in humans is encoded by the APOBEC4 gene. It is primarily expressed in testis and found in mammals, chicken, but not fishes.
In molecular biology, kataegis describes a pattern of localized hypermutations identified in some cancer genomes, in which a large number of highly patterned basepair mutations occur in a small region of DNA. The mutational clusters are usually several hundred basepairs long, alternating between a long range of C→T substitutional pattern and a long range of G→A substitutional pattern. This suggests that kataegis is carried out on only one of the two template strands of DNA during replication. Compared to other cancer-related mutations, such as chromothripsis, kataegis is more commonly seen; it is not an accumulative process but likely happens during one cycle of replication.
Mutational signatures are characteristic combinations of mutation types arising from specific mutagenesis processes such as DNA replication infidelity, exogenous and endogenous genotoxin exposures, defective DNA repair pathways, and DNA enzymatic editing.
Nina Papavasiliou is an immunologist and Helmholtz Professor in the Division of Immune Diversity at the German Cancer Research Center in Heidelberg, Germany. She is also an adjunct professor at the Rockefeller University, where she was previously associate professor and head of the Laboratory of Lymphocyte Biology. She is best known for her work in the fields of DNA and RNA editing.