ATP-dependent NAD(P)H-hydrate dehydratase

Last updated
ATP-dependent NAD(P)H-hydrate dehydratase
Identifiers
EC no. 4.2.1.93
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The enzyme ATP-dependent NAD(P)H-hydrate dehydratase (EC 4.2.1.93) catalyzes the chemical reactions

ATP + (6S)-6-β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide ADP + phosphate + NADH
ATP + (6S)-6-β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate ADP + phosphate + NADPH

This enzyme belongs to the family of lyases, specifically the hydro-lyases, which cleave carbon-oxygen bonds. The systematic name of this enzyme class is (6S)-6-β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase (ATP-hydrolysing; NADH-forming). Other names in common use include reduced nicotinamide adenine dinucleotide hydrate dehydratase, ATP-dependent H4NAD(P)+OH dehydratase, (6S)-β-6-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-, and dinucleotide hydro-lyase (ATP-hydrolysing).

Related Research Articles

<span class="mw-page-title-main">Adenosine triphosphate</span> Energy-carrying molecule in living cells

Adenosine triphosphate (ATP) is an organic compound that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts either to adenosine diphosphate (ADP) or to adenosine monophosphate (AMP). Other processes regenerate ATP. The human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA, and is used as a coenzyme.

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide</span> Chemical compound which is reduced and oxidized

Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.

NAD<sup>+</sup> kinase Enzyme

NAD+ kinase (EC 2.7.1.23, NADK) is an enzyme that converts nicotinamide adenine dinucleotide (NAD+) into NADP+ through phosphorylating the NAD+ coenzyme. NADP+ is an essential coenzyme that is reduced to NADPH primarily by the pentose phosphate pathway to provide reducing power in biosynthetic processes such as fatty acid biosynthesis and nucleotide synthesis. The structure of the NADK from the archaean Archaeoglobus fulgidus has been determined.

In enzymology, a glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phosphorylating) (EC 1.2.1.13) is an enzyme that catalyzes the chemical reaction

In enzymology, a rubredoxin-NAD+ reductase (EC 1.18.1.1) is an enzyme that catalyzes the chemical reaction.

<span class="mw-page-title-main">NADH peroxidase</span>

In enzymology, a NADH peroxidase (EC 1.11.1.1) is an enzyme that catalyzes the chemical reaction

Azobenzene reductase also known as azoreductase (EC 1.7.1.6) is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">NADPH dehydrogenase</span>

In enzymology, a NADPH dehydrogenase (EC 1.6.99.1) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

NAD(P)<sup>+</sup> transhydrogenase (<i>Re</i>/<i>Si</i>-specific) Enzyme class

In enzymology, a NAD(P)+ transhydrogenase (Re/Si-specific (EC 1.6.1.2) is an enzyme that catalyzes the chemical reaction

In enzymology, a nitrite reductase [NAD(P)H] (EC 1.7.1.4) is an enzyme that catalyzes the chemical reaction

The enzyme erythro-3-hydroxyaspartate ammonia-lyase (EC 4.3.1.20) catalyzes the chemical reaction

The enzyme trans-L-3-hydroxyproline dehydratase (EC 4.2.1.77) catalyzes the chemical reaction

In enzymology, a NAD+ glycohydrolase (EC 3.2.2.5) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">ADP-ribosyl cyclase</span>

In enzymology, a ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (EC 3.2.2.6) is a bifunctional enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)(+)—protein-arginine ADP-ribosyltransferase</span>

In enzymology, a NAD(P)+-protein-arginine ADP-ribosyltransferase (EC 2.4.2.31) is an enzyme that catalyzes the chemical reaction using nicotinamide adenine dinucleotide

In enzymology, a NADH kinase is an enzyme that catalyzes a chemical reaction.

<span class="mw-page-title-main">Nicotinamide-nucleotide adenylyltransferase</span>

In enzymology, nicotinamide-nucleotide adenylyltransferase (NMNAT) (EC 2.7.7.1) are enzymes that catalyzes the chemical reaction

ADP-dependent NAD(P)H-hydrate dehydratase is an enzyme with systematic name (6S)-6β-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide hydro-lyase . This enzyme catalyses the following chemical reaction

NAD(P)H-hydrate epimerase is an enzyme with systematic name (6R)-6beta-hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide 6-epimerase. This enzyme catalyses the following chemical reaction

References