Acidilobus saccharovorans

Last updated

Acidilobus saccharovorans
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Archaea
Kingdom: Proteoarchaeota
Superphylum: TACK group
Phylum: Thermoproteota
Class: Thermoprotei
Order: Desulfurococcales
Family: Acidilobaceae
Genus: Acidilobus
Species:
A. saccharovorans
Binomial name
Acidilobus saccharovorans
Prokofeva et al., 2009 [1] [2]

Acidilobus saccharovorans is a thermoacidophilic (that is, both thermophilic and acidophilic) species of anaerobic archaea. The species was originally described in 2009 after being isolated from hot springs in Kamchatka. [2] [3]

Contents

Description

Acidilobus saccharovorans has a coccoid morphology of 1–2 μm diameter with a relatively thick S-layer and a bundle of flagella. It has an optimal growth temperature of 80–85°C (qualifying it as a hyperthermophile) and an optimal pH of 3.5–4.0. It is an obligate anaerobe with fermentative metabolism. Its growth is accelerated by the presence of elemental sulfur, which is reduced to hydrogen sulfide; however, sulfur is not essential for growth. It is resistant to the antibiotics chloramphenicol, penicillin and streptomycin. [2] A. saccharovorans differs from A. aceticus , the only other recognized species in the genus, in two major respects: it is flagellated whereas A. aceticus is non-motile; and it is capable of growth on a wider variety of substrates, including many sugars and polysaccharides. [4] [3] Its name refers to this property of its metabolism. [2]

Genome and metabolism

The A. saccharovorans genome sequence was reported in 2010 as the first full genome of an archaeon that is thermoacidophilic and obligately anaerobic. [5] The genome contains genes consistent with the Embden-Meyerhof and Entner-Doudoroff metabolic pathways. Unexpectedly, it was also found to contain genes encoding the oxidative tricarboxylic acid cycle enzymes, albeit without the key enzyme, ATP citrate lyase, that would enable the pathway to operate reductively. Unusually for an archaeon, it encodes a beta-oxidation pathway, which would be expected to enable it to grow on triacylglycerides and fatty acids. [5] However, these metabolic capacities have not yet been demonstrated experimentally. [6] The predicted proteome also contains a number of features interpreted as adaptation to growth in acidic conditions by making use of the high extracellular concentration of protons. [5]

Phylogenetics

Comparison to other sequenced genomes suggests that A. saccharovorans is most closely related to Aeropyrum pernix . The genome also contains evidence of horizontal gene transfer between Acidilobales and Sulfolobales, an order of aerobic thermoacidophiles often found in the same hot springs. The A. saccharovorans genome sequence was originally reported to support establishment of a new order, Acidilobales, containing the families Acidilobaceae and Caldisphaeraceae, [5] which is currently accepted. [1] However, a 2015 phylogenomics study of conserved archaeal protein sequences suggested that the two families instead were better placed in the order Desulfurococcales, which also contains Aeropyrum pernix . [7]

Ecology

Acidilobales species are widely distributed in hot springs with acidic environments, where they likely play a role in the complete oxidation of organic material. Based on the metabolic capacities predicted from the A. saccharovorans genome, Acidilobales are metabolically similar to the Thermoproteales, and the two orders may serve similar ecological roles in acidic and neutral hot springs, respectively. [2] [6]

Related Research Articles

<span class="mw-page-title-main">Thermoacidophile</span> Microorganisms which live in water with high temperature and high acidity

A thermoacidophile is an extremophilic microorganism that is both thermophilic and acidophilic; i.e., it can grow under conditions of high temperature and low pH. The large majority of thermoacidophiles are archaea or bacteria, though occasional eukaryotic examples have been reported. Thermoacidophiles can be found in hot springs and solfataric environments, within deep sea vents, or in other environments of geothermal activity. They also occur in polluted environments, such as in acid mine drainage.

Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product of these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H
2
as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.

<span class="mw-page-title-main">Acidilobales</span> Order of archaea

Acidilobales are an order of archaea in the class Thermoprotei.

<i>Acidilobus</i> Genus of archaea

Acidilobus is a genus of archaea in the family Acidilobaceae.

Aeropyrum is a genus of archaea in the family Desulfurococcaceae.

Thermoanaerobacter is a genus in the phylum Bacillota (Bacteria). Members of this genus are thermophilic and anaerobic, several of them were previously described as Clostridium species and members of the now obsolete genera Acetogenium and Thermobacteroides

Caldithrix is a genus of thermophilic and anaerobic bacteria, currently assigned to its own phylum.

<i>Methanohalophilus mahii</i> Species of archaeon

Methanohalophilus mahii is an obligately anaerobic, methylotrophic, methanogenic cocci-shaped archaeon of the genus Methanohalophilus that can be found in high salinity aquatic environments. The name Methanohalophilus is said to be derived from methanum meaning "methane" in Latin; halo meaning "salt" in Greek; and mahii meaning "of Mah" in Latin, after R.A. Mah, who did substantial amounts of research on aerobic and methanogenic microbes. The proper word in ancient Greek for "salt" is however hals (ἅλς). The specific strain type was designated SLP and is currently the only identified strain of this species.

Thermococcus stetteri is an extremely thermophilic, marine, sulfur-metabolizing archaebacterium. It is anaerobic, its cells being irregular cocci 1 to 2 μm in diameter. Of the strains first isolated, two were motile due to a tuft of flagella, while the other two strains were nonmotile. Its type strain is K-3. It can grow on starch, pectin, and peptides, but not amino acids.

Thermoanaerobacter siderophilus is a dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium that was firstly isolated from the sediment of a hydrothermal vent found near the Karymsky volcano, in the Kamchatka peninsula, Russia. It is spore-forming, with type strain SR4T.

Acidilobus aceticus is a thermoacidophilic species of anaerobic archaea. The species was originally described in 2000 after being isolated from hot springs in Kamchatka. It is the type species of the genus Acidilobus.

Thermosinus is a Gram-negative bacteria genus from the family of Acidaminococcaceae. Up to now there is only one species of this genus known.

<i>Carboxydocella</i> Genus of bacteria

Carboxydocella is a Gram-positive and obligate anaerobe bacterial genus from the family of Syntrophomonadaceae.

Ammonifex is a Gram-negative, extremely thermophilic, strictly anaerobic and motile genus of bacteria from the family of Thermoanaerobacteraceae.

Carboxydothermus is a genus of thermophilic, anaerobic bacteria from the family of Thermoanaerobacteraceae.

Caldimicrobium is a genus of bacteria from the family of Thermodesulfobacteriaceae.

Caldimicrobium rimae is an extremely thermophilic, strictly anaerobic and facultatively chemolithoautotrophic bacterium from the genus of Caldimicrobium which has been isolated from the Treshchinnyi Spring from Uzon Caldera in Russia.

Vulcanibacillus is a genus of bacteria from the family of Bacillaceae with one known species. Vulcanibacillus modesticaldus has been isolated from a hydrothermal vent from the Rainbow Vent Field.

Thermanaerovibrio velox is a Gram-negative, moderately thermophilic, organotrophic and anaerobic bacterium from the genus of Thermanaerovibrio which has been isolated from cyanobacterial mat from Uzon caldera in Russia.

References

  1. 1 2 "Acidilobus aceticus". Integrated Taxonomic Information System . Retrieved 10 June 2016.
  2. 1 2 3 4 5 Prokofeva, MI; Kostrikina, NA; Kolganova, TV; Tourova, TP; Lysenko, AM; Lebedinsky, AV; Bonch-Osmolovskaya, EA (December 2009). "Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov". International Journal of Systematic and Evolutionary Microbiology. 59 (Pt 12): 3116–22. doi: 10.1099/ijs.0.010355-0 . PMID   19643887.
  3. 1 2 Prokofeva, Maria; Merkel, Alexander; Lebedinsky, Alexander; Bonch-Osmolovskaya, Elisaveta (2014). "The Family Acidilobaceae". The Prokaryotes: Other Major Lineages of Bacteria and the Archaea: 9–14. doi:10.1007/978-3-642-38954-2_332. ISBN   978-3-642-38953-5.
  4. Prokofeva, MI; Miroshnichenko, ML; Kostrikina, NA; Chernyh, NA; Kuznetsov, BB; Tourova, TP; Bonch-Osmolovskaya, EA (November 2000). "Acidilobus aceticus gen. nov., sp. nov., a novel anaerobic thermoacidophilic archaeon from continental hot vents in Kamchatka". International Journal of Systematic and Evolutionary Microbiology. 50 (6): 2001–8. doi:10.1099/00207713-50-6-2001. PMID   11155973.
  5. 1 2 3 4 Mardanov, AV; Svetlitchnyi, VA; Beletsky, AV; Prokofeva, MI; Bonch-Osmolovskaya, EA; Ravin, NV; Skryabin, KG (August 2010). "The genome sequence of the crenarchaeon Acidilobus saccharovorans supports a new order, Acidilobales, and suggests an important ecological role in terrestrial acidic hot springs". Applied and Environmental Microbiology. 76 (16): 5652–7. Bibcode:2010ApEnM..76.5652M. doi:10.1128/aem.00599-10. PMC   2918975 . PMID   20581186.
  6. 1 2 Bonch-Osmolovskaya, Elisaveta (2012). "Metabolic diversity of thermophilic prokaryotes—what's new.". Extremophiles: microbiology and biotechnology. Norfolk: Caister Academic Press. pp. 109–31. ISBN   9781904455981.
  7. Petitjean, C; Deschamps, P; López-García, P; Moreira, D; Brochier-Armanet, C (May 2015). "Extending the conserved phylogenetic core of archaea disentangles the evolution of the third domain of life". Molecular Biology and Evolution. 32 (5): 1242–54. doi: 10.1093/molbev/msv015 . PMID   25660375.