Acidilobales

Last updated

Acidilobales
Acidilobus and Nanopusillus acidilobi (cropped).webp
Scientific classification
Domain:
Phylum:
Class:
Order:
Acidilobales
Binomial name
Acidilobales
Prokofeva et al. 2009
Families

In taxonomy, the Acidilobales are an order of the Thermoprotei. [1] [2]

Contents

Phylogeny

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [3] and National Center for Biotechnology Information (NCBI) [4]

16S rRNA based LTP_06_2022 [5] [6] [7] 53 marker proteins based GTDB 08-RS214 [8] [9] [10]
Fervidicoccales

Fervidicoccaceae

Desulfurococcales 2

"Ignicoccaceae"

Desulfurococcaceae 2

Stetteria

Thermodiscus

Aeropyrum

Desulfurococcales

"Ignisphaeraceae"

Pyrodictiaceae

Desulfurococcaceae

Caldisphaeraceae

Caldisphaera

Acidilobaceae

Acidilobus

Sulfolobales

Sulfolobaceae

Sulfolobales

Desulfurococcaceae

Fervidicoccaceae

Pyrodictiaceae

"Ignicoccaceae"

Acidilobaceae

Aeropyrum

Caldisphaera

Acidilobus

"Ignisphaeraceae"

Zestosphaera {NBVN01}

Sulfolobaceae

See also

Related Research Articles

Chrysiogenaceae is a family of bacteria.

The Thermoprotei is a class of the Thermoproteota.

In taxonomy, the Halobacteriaceae are a family of the Halobacteriales in the domain Archaea. Halobacteriaceae represent a large part of halophilic Archaea, along with members in two other methanogenic families, Methanosarcinaceae and Methanocalculaceae. The family consists of many diverse genera that can survive extreme environmental niches. Most commonly, Halobacteriaceae are found in hypersaline lakes and can even tolerate sites polluted by heavy metals. They include neutrophiles, acidophiles, alkaliphiles, and there have even been psychrotolerant species discovered. Some members have been known to live aerobically, as well as anaerobically, and they come in many different morphologies. These diverse morphologies include rods in genus Halobacterium, cocci in Halococcus, flattened discs or cups in Haloferax, and other shapes ranging from flattened triangles in Haloarcula to squares in Haloquadratum, and Natronorubrum. Most species of Halobacteriaceae are best known for their high salt tolerance and red-pink pigmented members, but there are also non-pigmented species and those that require moderate salt conditions. Some species of Halobacteriaceae have been shown to exhibit phosphorus solubilizing activities that contribute to phosphorus cycling in hypersaline environments. Techniques such as 16S rRNA analysis and DNA-DNA hybridization have been major contributors to taxonomic classification in Halobacteriaceae, partly due to the difficulty in culturing halophilic Archaea.

The Myxococcota are a phylum of bacteria known as the fruiting gliding bacteria. All species of this group are Gram-negative. They are predominantly aerobic genera that release myxospores in unfavorable environments.

Methanococcus is a genus of coccoid methanogens of the family Methanococcaceae. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaeal genome to be completely sequenced, revealing many novel and eukaryote-like elements.

<span class="mw-page-title-main">Methanomicrobia</span> Class of archaea

In the taxonomy of microorganisms, the Methanomicrobia are a class of the Euryarchaeota.

<span class="mw-page-title-main">Desulfurococcales</span> Order of archaea

The Desulfurococcales are an order of the Thermoprotei, part of the kingdom Archaea. The order encompasses some genera which are all thermophilic, autotrophs which utilise chemical energy, typically by reducing sulfur compounds using hydrogen.

Methanobacteriales is an order of archaeans in the class Methanobacteria. Species within this order differ from other methanogens in that they can use fewer catabolic substrates and have distinct morphological characteristics, lipid compositions, and RNA sequences. Their cell walls are composed of pseudomurein. Most species are Gram-positive with rod-shaped bodies and some can form long filaments. Most of them use formate to reduce carbon dioxide, but those of the genus Methanosphaera use hydrogen to reduce methanol to methane.

In taxonomy, the Methanococcales are an order of the Methanococci.

In the taxonomy of microorganisms, the Methanomicrobiales are an order of the Methanomicrobia. Methanomicrobiales are strictly carbon dioxide reducing methanogens, using hydrogen or formate as the reducing agent. As seen from the phylogenetic tree based on 'The All-Species Living Tree' Project the family Methanomicrobiaceae is highly polyphyletic within the Methanomicrobiales.

<span class="mw-page-title-main">Nitrosopumilales</span> Order of archaea

The Nitrosopumilales are an order of the Archaea class Nitrososphaeria.

<span class="mw-page-title-main">Sulfolobales</span> Order of archaea

Sulfolobales is an order of archaeans in the class Thermoprotei.

In taxonomy, the Methanocaldococcaceae are a family of microbes within the order Methanococcales. It contains two genera, the type genus Methanocaldococcus and Methanotorris. These species are coccoid in form, neutrophilic to slightly acidophilic, and predominantly motile, and they have a very short generation period, from 25 to 45 minutes under optimal conditions. They produce energy exclusively through the reduction of carbon dioxide with hydrogen. Some species have been found in marine hydrothermal vents.

In taxonomy, the Methanocorpusculaceae are a family of microbes within the order Methanomicrobiales. It contains exactly one genus, Methanocorpusculum. The species within Methanocorpusculum were first isolated from anaerobic digesters and anaerobic wastewater treatment plants. In the wild, they prefer freshwater environments. Unlike many other methanogenic archaea, they do not require high temperatures or extreme salt concentrations to live and grow.

<span class="mw-page-title-main">Methanosarcinaceae</span> Family of archaea

In taxonomy, the Methanosarcinaceae are a family of the Methanosarcinales.

<i>Acidilobus</i> Genus of archaea

In taxonomy, Acidilobus is a genus of the Acidilobaceae.

Halococcus is a genus of the Halococcaceae.

In taxonomy, Methanospirillum is a genus of microbes within the family Methanospirillaceae. All its species are methanogenic archaea. The cells are bar-shaped and form filaments. Most produce energy via the reduction of carbon dioxide with hydrogen, but some species can also use formate as a substrate. They are Gram-negative and move using archaella on the sides of the cells. They are strictly anaerobic, and they are found in wetland soil and anaerobic water treatment systems.

Methanocalculus is a genus of the Methanomicrobiales, and is known to include methanogens.

<span class="mw-page-title-main">Acidobacteriaceae</span> Family of bacteria

The Acidobacteriaceae are a family of Acidobacteriota.

References

  1. Prokofeva MI; Kostrikina NA; Kolganova TV; Tourova TP; Lysenko AM; Lebedinsky AV; Bonch-Osmolovskaya EA (2009). "Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov". Int J Syst Evol Microbiol. 59 (Pt 12): 3116–3122. doi: 10.1099/ijs.0.010355-0 . PMID   19643887.
  2. See the NCBI webpage on Caldisphaerales. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information . Retrieved 2007-03-19.
  3. J.P. Euzéby. "Acidilobales". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2020-11-17.
  4. Sayers; et al. "Acidilobales". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2011-06-05.
  5. "The LTP" . Retrieved 10 May 2023.
  6. "LTP_all tree in newick format" . Retrieved 10 May 2023.
  7. "LTP_06_2022 Release Notes" (PDF). Retrieved 10 May 2023.
  8. "GTDB release 08-RS214". Genome Taxonomy Database . Retrieved 10 May 2023.
  9. "ar53_r214.sp_label". Genome Taxonomy Database . Retrieved 10 May 2023.
  10. "Taxon History". Genome Taxonomy Database . Retrieved 10 May 2023.

Further reading

Scientific journals

Scientific books

Scientific databases