Aeronomy

Last updated

Aeronomy is the scientific study of the upper atmosphere of the Earth and corresponding regions of the atmospheres of other planets. It is a branch of both atmospheric chemistry and atmospheric physics. Scientists specializing in aeronomy, known as aeronomers, study the motions and chemical composition and properties of the Earth's upper atmosphere and regions of the atmospheres of other planets that correspond to it, as well as the interaction between upper atmospheres and the space environment. [1] In atmospheric regions aeronomers study, chemical dissociation and ionization are important phenomena.

Contents

History

The mathematician Sydney Chapman introduced the term aeronomy to describe the study of the Earth's upper atmosphere [2] in 1946 in a letter to the editor of Nature entitled "Some Thoughts on Nomenclature." [3] The term became official in 1954 when the International Union of Geodesy and Geophysics adopted it. [4] "Aeronomy" later also began to refer to the study of the corresponding regions of the atmospheres of other planets.

Branches

Aeronomy can be divided into three main branches: terrestrial aeronomy, planetary aeronomy, and comparative aeronomy. [5]

Terrestrial aeronomy

Nssl0020.jpg
Black Brant.jpg
AIM spacecraft model.png
Balloons (left) and sounding rockets (center) are among the tools aeronomers use to gather data on the Earth's upper atmosphere. At right, a model of the Aeronomy of Ice in the Mesosphere (AIM) satellite, launched in 2007 to gather data on noctilucent clouds and polar mesospheric clouds in Earth's atmosphere.
An animation of atmospheric tide data gathered by the TIMED satellite in September 2005. Timed100kmsabertidisep2005.gif
An animation of atmospheric tide data gathered by the TIMED satellite in September 2005.

Terrestrial aeronomy focuses on the Earth's upper atmosphere, which extends from the stratopause to the atmosphere's boundary with outer space and is defined as consisting of the mesosphere, thermosphere, and exosphere and their ionized component, the ionosphere. [6] Terrestrial aeronomy contrasts with meteorology, which is the scientific study of the Earth's lower atmosphere, defined as the troposphere and stratosphere. [5] [7] [note 1] Although terrestrial aeronomy and meteorology once were completely separate fields of scientific study, cooperation between terrestrial aeronomers and meteorologists has grown as discoveries made since the early 1990s have demonstrated that the upper and lower atmospheres have an impact on one another's physics, chemistry, and biology. [5]

Terrestrial aeronomers study atmospheric tides and upper-atmospheric lightning discharges such as red sprites, sprite halos, blue jets, and ELVES.[ citation needed ] They also investigate the causes of dissociation and ionization processes in the Earth's upper atmosphere. [8] Terrestrial aeronomers use ground-based telescopes, balloons, satellites, and sounding rockets to gather data from the upper atmosphere.

Atmospheric tides

Atmospheric tides are global-scale periodic oscillations of the Earth′s atmosphere, analogous in many ways to ocean tides. Atmospheric tides dominate the dynamics of the mesosphere and lower thermosphere, serving as an important mechanism for transporting energy from the upper atmosphere into the lower atmosphere. Terrestrial aeronomers study atmospheric tides because an understanding of them is essential to an understanding of the atmosphere as a whole and of benefit in improving the understanding of meteorology. Modeling and observations of atmospheric tides allow researchers to monitor and predict changes in the Earth's atmosphere. [9]

Upper-atmospheric lightning

Representation of upper-atmospheric lightning and electrical-discharge phenomena Upperatmoslight1.jpg
Representation of upper-atmospheric lightning and electrical-discharge phenomena

"Upper-atmospheric lightning" or "upper-atmospheric discharge" are terms aeronomers sometimes use to refer to a family of electrical-breakdown phenomena in the Earth's upper atmosphere that occur well above the altitudes of the tropospheric lightning observed in the lower atmosphere. Currently, the preferred term for an electrical-discharge phenomenon induced in the upper atmosphere by tropospheric lightning is "transient luminous event" (TLE) . There are various types of TLEs including red sprites, sprite halos, blue jets, and ELVES (an acronym for “Emission of Light and Very-Low-Frequency perturbations due to Electromagnetic Pulse Sources”) . [10]

Planetary aeronomy

Planetary aeronomy studies the regions of the atmospheres of other planets [5] that correspond to the Earth's mesosphere, thermosphere, exosphere, and ionosphere. [7] In some cases, a planet's entire atmosphere may consist only of what on Earth constitutes the upper atmosphere, or only a portion of it. Planetary aeronomers use ground-based telescopes, space telescopes, and space probes which fly by, orbit, or land on other planets to gain knowledge of the atmospheres of those planets through the use of instruments such as interferometers, optical spectrometers, magnetometers, and plasma detectors and techniques such as radio occultation. [11] Although planetary aeronomy originally was confined to the study of the atmospheres of the other planets in the Solar System, the discovery since 1995 of exoplanets has allowed planetary aeronomers to expand their field to include the atmospheres of those planets as well. [12]

Comparative aeronomy

Comparative aeronomy uses the findings of terrestrial and planetary aeronomy — traditionally separate scientific fields [6] — to compare the characteristics and behaviors of the atmospheres of other planets with one another and with the upper atmosphere of Earth. [6] It seeks to identify and describe the ways in which differing chemistry, magnetic fields, and thermodynamics on various planets affect the creation, evolution, diversity, and disappearance of atmospheres. [6]

Notes

  1. An alternative definition divides the atmosphere into three rather than two parts, with the "upper atmosphere" limited to the exosphere and thermosphere, the mesosphere and stratosphere making up the "middle atmosphere," and the "lower atmosphere" consisting only of the troposphere. Use of this definition does not change the focus of aeronomy, which is all of the Earth's atmosphere above the stratopause, or of meteorology, which is all of the Earth's atmosphere below the stratopause.

See also

Related Research Articles

<span class="mw-page-title-main">Ionosphere</span> Ionized part of Earths upper atmosphere

The ionosphere is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on Earth. It also affects GPS signals that travel through this layer.

<span class="mw-page-title-main">Mesosphere</span> Layer of the atmosphere directly above the stratosphere and below the thermosphere

The mesosphere is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere. In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define limits: it begins at the top of the stratosphere, and ends at the mesopause, which is the coldest part of Earth's atmosphere, with temperatures below −143 °C. The exact upper and lower boundaries of the mesosphere vary with latitude and with season, but the lower boundary is usually located at altitudes from 47 to 51 km above sea level, and the upper boundary is usually from 85 to 100 km.

<span class="mw-page-title-main">Thermosphere</span> Layer of the Earths atmosphere above the mesosphere and below the exosphere

The thermosphere is the layer in the Earth's atmosphere directly above the mesosphere and below the exosphere. Within this layer of the atmosphere, ultraviolet radiation causes photoionization/photodissociation of molecules, creating ions; the thermosphere thus constitutes the larger part of the ionosphere. Taking its name from the Greek θερμός meaning heat, the thermosphere begins at about 80 km (50 mi) above sea level. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass. Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. Temperatures are highly dependent on solar activity, and can rise to 2,000 °C (3,630 °F) or more. Radiation causes the atmospheric particles in this layer to become electrically charged, enabling radio waves to be refracted and thus be received beyond the horizon. In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into space, although, by the judging criteria set for the definition of the Kármán line (100 km), most of the thermosphere is part of space. The border between the thermosphere and exosphere is known as the thermopause.

The mesopause is the point of minimum temperature at the boundary between the mesosphere and the thermosphere atmospheric regions. Due to the lack of solar heating and very strong radiative cooling from carbon dioxide, the mesosphere is the coldest region on Earth with temperatures as low as -100 °C. The altitude of the mesopause for many years was assumed to be at around 85 km (53 mi), but observations to higher altitudes and modeling studies in the last 10 years have shown that in fact there are two mesopauses - one at about 85 km and a stronger one at about 100 km (62 mi), with a layer of slightly warmer air between them.

The exosphere is a thin, atmosphere-like volume surrounding a planet or natural satellite where molecules are gravitationally bound to that body, but where the density is so low that the molecules are essentially collision-less. In the case of bodies with substantial atmospheres, such as Earth's atmosphere, the exosphere is the uppermost layer, where the atmosphere thins out and merges with outer space. It is located directly above the thermosphere. Very little is known about it due to a lack of research. Mercury, the Moon, Ceres, Europa, and Ganymede have surface boundary exospheres, which are exospheres without a denser atmosphere underneath. The Earth's exosphere is mostly hydrogen and helium, with some heavier atoms and molecules near the base.

<span class="mw-page-title-main">Atmospheric science</span> Study of the atmosphere, its processes, and its interactions with other systems

Atmospheric science is the study of the Earth's atmosphere and its various inner-working physical processes. Meteorology includes atmospheric chemistry and atmospheric physics with a major focus on weather forecasting. Climatology is the study of atmospheric changes that define average climates and their change over time, due to both natural and anthropogenic climate variability. Aeronomy is the study of the upper layers of the atmosphere, where dissociation and ionization are important. Atmospheric science has been extended to the field of planetary science and the study of the atmospheres of the planets and natural satellites of the Solar System.

The stratopause is the level of the atmosphere which is the boundary between two layers: the stratosphere and the mesosphere. In the stratosphere, the temperature increases with altitude, and the stratopause is the region where a maximum in the temperature occurs. This atmospheric feature is not exclusive to Earth, but also occurs on any other planet or moon with an atmosphere. According to James Kasting, planets whose atmospheres do not absorb shortwave sunlight, such as Venus and Mars, do not have a Stratosphere and thus have no Stratopause.

<span class="mw-page-title-main">Atmosphere of Earth</span> Gas layer surrounding Earth

The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth creates pressure, absorbs most meteoroids and ultraviolet solar radiation, warms the surface through heat retention, allowing life and liquid water to exist on the Earth's surface, and reduces temperature extremes between day and night.

<span class="mw-page-title-main">Atmosphere</span> Layer of gases surrounding an astronomical body held by gravity

An atmosphere is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosphere is the outer region of a star, which includes the layers above the opaque photosphere; stars of low temperature might have outer atmospheres containing compound molecules.

<span class="mw-page-title-main">Atmospheric physics</span> The application of physics to the study of the atmosphere

Within the atmospheric sciences, atmospheric physics is the application of physics to the study of the atmosphere. Atmospheric physicists attempt to model Earth's atmosphere and the atmospheres of the other planets using fluid flow equations, radiation budget, and energy transfer processes in the atmosphere. In order to model weather systems, atmospheric physicists employ elements of scattering theory, wave propagation models, cloud physics, statistical mechanics and spatial statistics which are highly mathematical and related to physics. It has close links to meteorology and climatology and also covers the design and construction of instruments for studying the atmosphere and the interpretation of the data they provide, including remote sensing instruments. At the dawn of the space age and the introduction of sounding rockets, aeronomy became a subdiscipline concerning the upper layers of the atmosphere, where dissociation and ionization are important.

<span class="mw-page-title-main">TIMED</span> American Weather Satellite

The TIMED mission is dedicated to study the influences energetics and dynamics of the Sun and humans on the least explored and understood region of Earth's atmosphere – the Mesosphere and Lower Thermosphere / Ionosphere (MLTI). The mission was launched from Vandenberg Air Force Base in California on 7 December 2001 aboard a Delta II rocket launch vehicle. The project is sponsored and managed by NASA, while the spacecraft was designed and assembled by the Applied Physics Laboratory at Johns Hopkins University. The mission has been extended several times, and has now collected data over an entire solar cycle, which helps in its goal to differentiate the Sun's effects on the atmosphere from other effects. It shared its Delta II launch vehicle with the Jason-1 oceanography mission.

Upper atmosphere is a collective term that refers to various layers of the atmosphere of the Earth above the troposphere and corresponding regions of the atmospheres of other planets, and includes:

<span class="mw-page-title-main">Index of meteorology articles</span>

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

<span class="mw-page-title-main">Outline of Earth sciences</span> Hierarchical outline list of articles related to Earth sciences

The following outline is provided as an overview of and topical guide to Earth science:

<span class="mw-page-title-main">Atmosphere of Venus</span> Gas layer surrounding Venus

The atmosphere of Venus is primarily of supercritical carbon dioxide and is much denser and hotter than that of Earth. The temperature at the surface is 740 K, and the pressure is 93 bar (1,350 psi), roughly the pressure found 900 m (3,000 ft) underwater on Earth. The Venusian atmosphere supports opaque clouds of sulfuric acid, making optical Earth-based and orbital observation of the surface impossible. Information about the topography has been obtained exclusively by radar imaging. Aside from carbon dioxide, the other main component is nitrogen. Other chemical compounds are present only in trace amounts.

Atmospheric tides are global-scale periodic oscillations of the atmosphere. In many ways they are analogous to ocean tides. Atmospheric tides can be excited by:

<span class="mw-page-title-main">Upper-atmospheric lightning</span> Rare transient luminous events that occurs over tops of thunder storms

Upper-atmospheric lightning and ionospheric lightning are terms sometimes used by researchers to refer to a family of short-lived electrical-breakdown phenomena that occur well above the altitudes of normal lightning and storm clouds. Upper-atmospheric lightning is believed to be electrically induced forms of luminous plasma. The preferred usage is transient luminous event (TLE), because the various types of electrical-discharge phenomena in the upper atmosphere lack several characteristics of the more familiar tropospheric lightning.

Earth science is an all-embracing term for the sciences related to the planet Earth. It is arguably a special case in planetary science, the Earth being the only known life-bearing planet. There are both reductionist and holistic approaches to Earth science. There are four major disciplines in earth sciences, namely geography, geology, geophysics and geodesy. These major disciplines use physics, chemistry, biology, chronology and mathematics to build a quantitative understanding of the principal areas or spheres of the Earth system.

The Royal Belgian Institute for Space Aeronomy (BIRA-IASB) is a Belgian federal scientific research institute. Created in 1964, its main tasks are research and public service in space aeronomy, which is the physics and chemistry of the atmosphere of the Earth and other planets, and of outer space. The scientists rely on ground-based, balloon-, air- or space-borne instruments and computer models.

Maura E. Hagan is a Professor of Physics and Dean of the College of Science at Utah State University. She is a Fellow of both the American Meteorological Society and the American Geophysical Union, and was elected a member of the National Academy of Sciences in 2019.

References

  1. Brasseur, Guy (1984). Aeronomy of the Middle Atmosphere : Chemistry and Physics of the Stratosphere and Mesosphere. Springer. pp. xi. ISBN   978-94-009-6403-7.
  2. Nagy, Andrew F.; Balogh, André; Thomas E. Cravens; Mendillo, Michael; Mueller-Woodarg, Ingo (2008). Comparative Aeronomy. Springer. pp. 1–2. ISBN   978-0-387-87824-9.
  3. Sydney Chapman, "Some Thoughts on Nomenclature," Nature 157, (1946): 405. Available on-line at: Nature.
  4. Royal Belgian Institute for Space Aeronomy "Aeronomy, atmosphere science, what is it?" Accessed 21 May 2021
  5. 1 2 3 4 "Mendillo, Michael, Andrew Nagy, and J .H. Waite, "Introduction," Atmospheres in the Solar System: Comparative Aeronomy, Geophysical Monograph Series Volume 130, 2002, unpaginated Accessed 23 March 2021". Archived from the original on 22 May 2013. Retrieved 24 March 2021.
  6. 1 2 3 4 "Mendillo, Michael, Andrew Nagy, and J .H. Waite, "Preface," Atmospheres in the Solar System: Comparative Aeronomy, Geophysical Monograph Series Volume 130, 2002, unpaginated Accessed 23 March 2021". Archived from the original on 22 May 2013. Retrieved 24 March 2021.
  7. 1 2 "Planetary Aeronomy," Imperial College London Accessed 23 March 2021
  8. Chapman, Sydney (1960). The Thermosphere - the Earth's Outermost Atmosphere. Physics of the Upper Atmosphere. Academic Press. p. 4. ISBN   978-0-12-582050-9.
  9. Volland, H., "Atmospheric Tidal and Planetary Waves", Kluwer Publ., Dordrecht, 1988
  10. Earle R. Williams (November 2001) "Sprites, elves, and glow discharge tubes," Physics Today, 54 (11) : 41-47. Available on-line at: Physics Today Archived 2012-05-27 at archive.today .
  11. Nagy, Andrew F., "History of Planetary Aeronomy," cosmos.esa.int Accessed 23 March 2021
  12. Abstract of Bauer, Siegfried J, and Helmut Lammer, Planetary Aeronomy: Atmosphere Environments in Planetary Systems, Berlin: Springer-Verlag, 2004, ISBN   978-3-662-09362-7 Accessed 23 March 2021