Artemisinic aldehyde Delta11(13)-reductase

Last updated
Artemisinic aldehyde Delta11(13)-reductase
Identifiers
EC no. 1.3.1.92
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Artemisinic aldehyde Delta11(13)-reductase (EC 1.3.1.92, Dbr2) is an enzyme with systematic name artemisinic aldehyde:NADP+ oxidoreductase. [1] [2] This enzyme catalyses the following chemical reaction

(11R)-dihydroartemisinic aldehyde + NADP+ artemisinic aldehyde + NADPH + H+

This enzyme i present in Artemisia annua .

Related Research Articles

<i>Artemisia annua</i> Herb known as sweet wormwood used to treat malaria

Artemisia annua, also known as sweet wormwood, sweet annie, sweet sagewort, annual mugwort or annual wormwood, is a common type of wormwood native to temperate Asia, but naturalized in many countries including scattered parts of North America.

<span class="mw-page-title-main">Artemisinin</span> Group of drugs used against malaria

Artemisinin and its semisynthetic derivatives are a group of drugs used in the treatment of malaria due to Plasmodium falciparum. It was discovered in 1972 by Tu Youyou, who shared the 2015 Nobel Prize in Physiology or Medicine for her discovery. Artemisinin-based combination therapies (ACTs) are now standard treatment worldwide for P. falciparum malaria as well as malaria due to other species of Plasmodium. Artemisinin is extracted from the plant Artemisia annua, sweet wormwood, a herb employed in Chinese traditional medicine. A precursor compound can be produced using a genetically engineered yeast, which is much more efficient than using the plant.

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide phosphate</span> Chemical compound

Nicotinamide adenine dinucleotide phosphate, abbreviated NADP+ or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source'). NADPH is the reduced form of NADP+, the oxidized form. NADP+ is used by all forms of cellular life.

<span class="mw-page-title-main">Aldose reductase</span> Enzyme

In enzymology, aldose reductase is a cytosolic NADPH-dependent oxidoreductase that catalyzes the reduction of a variety of aldehydes and carbonyls, including monosaccharides. It is primarily known for catalyzing the reduction of glucose to sorbitol, the first step in polyol pathway of glucose metabolism.

<span class="mw-page-title-main">Carbonyl reductase (NADPH)</span> Class of enzymes

In enzymology, a carbonyl reductase (NADPH) (EC 1.1.1.184) is an enzyme that catalyzes the chemical reaction

In enzymology, a dihydrokaempferol 4-reductase (EC 1.1.1.219) is an enzyme that catalyzes the chemical reaction

In enzymology, a glucuronate reductase (EC 1.1.1.19) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Sepiapterin reductase</span>

Sepiapterin reductase is an enzyme that in humans is encoded by the SPR gene.

<span class="mw-page-title-main">3-oxoacyl-(acyl-carrier-protein) reductase</span> Enzyme

In enzymology, a 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Aspartate-semialdehyde dehydrogenase</span> Amino-acid-synthesizing enzyme in fungi, plants and prokaryota

In enzymology, an aspartate-semialdehyde dehydrogenase is an enzyme that is very important in the biosynthesis of amino acids in prokaryotes, fungi, and some higher plants. It forms an early branch point in the metabolic pathway forming lysine, methionine, leucine and isoleucine from aspartate. This pathway also produces diaminopimelate which plays an essential role in bacterial cell wall formation. There is particular interest in ASADH as disabling this enzyme proves fatal to the organism giving rise to the possibility of a new class of antibiotics, fungicides, and herbicides aimed at inhibiting it.

In enzymology, a glutamate-5-semialdehyde dehydrogenase (EC 1.2.1.41) is an enzyme that catalyzes the chemical reaction

A glutamyl-tRNA reductase (EC 1.2.1.70) is an enzyme that catalyzes the chemical reaction

In enzymology, a long-chain-fatty-acyl-CoA reductase (EC 1.2.1.50) is an enzyme that catalyzes the chemical reaction

In enzymology, a preQ1 synthase (EC 1.7.1.13) is an enzyme that catalyzes the chemical reaction

The enzyme amorpha-4,11-diene synthase (ADS) catalyzes the chemical reaction

<span class="mw-page-title-main">Aldo-keto reductase family 1, member A1</span> Mammalian protein found in Homo sapiens

Alcohol dehydrogenase [NADP+] also known as aldehyde reductase or aldo-keto reductase family 1 member A1 is an enzyme that in humans is encoded by the AKR1A1 gene. AKR1A1 belongs to the aldo-keto reductase (AKR) superfamily. It catalyzes the NADPH-dependent reduction of a variety of aromatic and aliphatic aldehydes to their corresponding alcohols and catalyzes the reduction of mevaldate to mevalonic acid and of glyceraldehyde to glycerol. Mutations in the AKR1A1 gene has been found associated with non-Hodgkin's lymphoma.

<span class="mw-page-title-main">Sinapaldehyde</span> Chemical compound

Sinapaldehyde is an organic compound with the formula HO(CH3O)2C6H2CH=CHCHO. It is a derivative of cinnamaldehyde, featuring one hydroxy group and two methoxy groups as substituents. It is an intermediate in the formation of sinapyl alcohol, a lignol that is a major precursor to lignin.

NADP-retinol dehydrogenase (EC 1.1.1.300, all-trans retinal reductase, all-trans-retinol dehydrogenase, NADP(H)-dependent retinol dehydrogenase/reductase, RDH11, RDH12, RDH13, RDH14, retinol dehydrogenase 12, retinol dehydrogenase 14, retinol dehydrogenase (NADP+), RalR1, PSDR1) is an enzyme with systematic name retinol:NADP+ oxidoreductase. This enzyme catalyses the following chemical reaction

Amorpha-4,11-diene 12-monooxygenase (EC 1.14.13.158, CYP71AV1) is an enzyme with systematic name amorpha-4,11-diene,NADPH:oxygen oxidoreductase (12-hydroxylating). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Chlorophyllide</span> Chemical compound

Chlorophyllide a and Chlorophyllide b are the biosynthetic precursors of chlorophyll a and chlorophyll b respectively. Their propionic acid groups are converted to phytyl esters by the enzyme chlorophyll synthase in the final step of the pathway. Thus the main interest in these chemical compounds has been in the study of chlorophyll biosynthesis in plants, algae and cyanobacteria. Chlorophyllide a is also an intermediate in the biosynthesis of bacteriochlorophylls.

References

  1. Bertea CM, Freije JR, van der Woude H, Verstappen FW, Perk L, Marquez V, De Kraker JW, Posthumus MA, Jansen BJ, de Groot A, Franssen MC, Bouwmeester HJ (January 2005). "Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua". Planta Medica. 71 (1): 40–7. doi: 10.1055/s-2005-837749 . PMID   15678372.
  2. Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, Olson DJ, Ross AR, Covello PS (August 2008). "The molecular cloning of artemisinic aldehyde Delta11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua". The Journal of Biological Chemistry. 283 (31): 21501–8. doi: 10.1074/jbc.M803090200 . PMID   18495659.