Brake fluid

Last updated

Brake fluid is a type of hydraulic fluid used in hydraulic brake and hydraulic clutch applications in automobiles, motorcycles, light trucks, and some bicycles. It is used to transfer force into pressure, and to amplify braking force. It works because liquids are not appreciably compressible.

Contents

Most brake fluids used today are glycol-ether based, but mineral oil ( Citroën/Rolls-Royce liquide hydraulique minéral (LHM)) and silicone-based (DOT 5) fluids are also available. [1]

Standards

Most Brake fluids are manufactured to meet standards set by international, national, or local organizations or government agencies.

International

The International Standards Organisation has published its standard ISO 4925, defining classes 3, 4, and 5, as well as class 5.1, class 6 [2] and class 7 [3] [4] reflecting progressively higher performance for brake fluids.

SAE

The Society of Automotive Engineers SAE has published standards J1703, J1704, and J1705, reflecting progressively higher performance for brake fluids. These have counterparts in the international standard, ISO 4925.

United States

The Federal Motor Vehicle Safety Standards (FMVSS) under FMVSS Standard No. 116 [5] defines grades DOT 3, DOT 4, DOT 5 and DOT 5.1, where DOT refers to the U.S. Department of Transportation. These are widely used in other countries. Their classifications broadly reflect the SAE's specifications, DOT 3 is equivalent to SAE J1703 and ISO class 3, DOT 4 to SAE J1704 and ISO class 4, etc. [6]

All DOT compliant fluids must be colorless or amber, except for DOT 5 silicone, which must be purple. FMVSS Standard No. 116's scope is limited to fluid 'for use'. Brake fluid 'in use', or not labeled DOT compliant, is found any color. [5]

DOT 4

While a vehicle that uses DOT 3 may also use DOT 4 or 5.1 (a temperature upgrade) if the elastomers in the system accept the borate compounds that raise the boiling point,[ citation needed ] a vehicle that requires DOT 4 might boil the brake fluid if a DOT 3 (a temperature downgrade) is used. Additionally, these polyglycol-ether-based fluids cannot be mixed with DOT 5.0, which is silicone based.

DOT 5

DOT 5 is a silicone-based fluid and is separate from the series of DOT 2, 3, 4, 5.1. It is immiscible with water, and with other brake fluids, and must not be mixed with them. Systems can change fluid only after a complete system changeover, such as a total restoration.

It contains at least 70% by weight of a diorgano polysiloxane. [7] Unlike polyethylene glycol based fluids, DOT 5 is hydrophobic. [8] An advantage over other forms of brake fluid is that silicone has a more stable viscosity index over a wider temperature range. Another property is that it does not damage paint.[ citation needed ]

DOT 5 brake fluid is not compatible with anti-lock braking systems. DOT 5 fluid can aerate when the anti-lock brake system is activated. DOT 5 brake fluid absorbs a small amount of air requiring care when bleeding the system of air. [9]

DOT 5.1

Lack of acceptance of silicone-based fluids led to the development of DOT 5.1, a fluid giving the performance advantages of silicone, whilst retaining some familiarity and compatibility with the glycol ether fluids. DOT 5.1 is the non-silicone version of DOT 5, defined by FMVSS 116 as being less than 70% silicone. Above that threshold makes it DOT 5.

Citroën hydropneumatic suspension

In the 1950s, Citroën introduced a hydropneumatic suspension system, powered by an engine-driven pump and also used to operate the braking system. This used a Citroën-specific hydraulic fluid. The first fluids were of variable chemistry, and available from various suppliers. Shell Donax D, Lockheed HD19, Castrol HF were some of them. Citroën then attempted to improve and standardise the fluid in 1962 with LHS (Liquide Hydraulique Synthétique), a vegetable/synthetic based fluid. In 1964 this was improved with the fully synthetic LHS2. In 1966 Citroën introduced LHM (Liquide Hydraulique Minéral), a mineral fluid. LHS was hygroscopic and gave problems with internal corrosion. Although the two fluids are incompatible, LHM has been universal since 1967, and some older cars have been converted to use it. [10]

This system was also used on Rolls-Royce and some Maserati models.

Hydragas and Hydrolastic suspension

Hydragas and Hydrolastic suspension were a widely used form of hydropneumatic suspension, designed by Alex Moulton, and used on British Leyland cars from the 1960s. This system was not engine-driven and did not involve the braking system.

The fluid was a low viscosity fluid based on diluted alcohol. [11]

49% alcohol
49% distilled water
1% triethanolamine phosphate (surfactant)
1% sodium mercaptobenzothiazole (stenching agent)

Characteristics

Brake fluids must have certain characteristics and meet certain quality standards for the braking system to work properly.

Viscosity

For reliable, consistent brake system operation, brake fluid must maintain a constant viscosity under a wide range of temperatures, including extreme cold. This is especially important in systems with an anti-lock braking system (ABS), traction control, and stability control (ESP), as these systems often use micro-valves and require very rapid activation. [12] DOT 5.1 fluids are specified with low viscosity over a wide range of temperatures, although not all cars fitted with ABS or ESP specify DOT 5.1 brake fluid. [13] For a faster reaction of the ABS and ESP systems, DOT 4 and DOT 5.1 brake fluids exist with low viscosity meeting the maximum 750 mm2/s viscosity at −40 °C (−40 °F) requirement of ISO 4925 class 6. [2] These are often named DOT 4+ or Super DOT 4 and DOT 5.1 ESP.

Boiling point

Brake fluid is subjected to very high temperatures, especially in the wheel cylinders of drum brakes and disk brake calipers. It must have a high boiling point to avoid vaporizing in the lines. This vaporization creates a problem because vapor is highly compressible relative to liquid, and therefore negates the hydraulic transfer of braking force - so the brakes will fail to stop the vehicle. [14]

Quality standards refer to a brake fluid's "dry" and "wet" boiling points. The wet boiling point, which is usually much lower (although above most normal service temperatures), refers to the fluid's boiling point after absorbing a certain amount of moisture. This is several (single digit) percent, varying from formulation to formulation. Glycol-ether (DOT 3, 4, and 5.1) brake fluids are hygroscopic (water absorbing), which means they absorb moisture from the atmosphere under normal humidity levels. Non-hygroscopic fluids (e.g. silicone/DOT 5 and mineral oil based formulations), are hydrophobic, and can maintain an acceptable boiling point over the fluid's service life.

Silicone based fluid is more compressible than glycol based fluid, leading to brakes with a spongy feeling. [14] It can potentially suffer phase separation/water pooling and freezing/boiling in the system over time - the main reason single phase hygroscopic fluids are used.[ citation needed ]

Characteristics of common braking fluids [15] [14]
Dry boiling point Wet boiling point [lower-alpha 1] Viscosity at −40 °C (−40 °F)Viscosity at 100 °C (212 °F)Primary constituent
DOT 2190 °C (374 °F)140 °C (284 °F) ? ?castor oil/alcohol
DOT 3205 °C (401 °F)140 °C (284 °F)≤ 1500 mm2/s≥ 1.5 mm2/s glycol ether
DOT 4230 °C (446 °F)155 °C (311 °F)≤ 1800 mm2/s≥ 1.5 mm2/sglycol ether/borate ester
DOT 4+230 °C (446 °F)155 °C (311 °F)≤ 750 mm2/s≥ 1.5 mm2/sglycol ether/borate ester
LHM+ 249 °C (480 °F)249 °C (480 °F)≤ 1200 mm2/s [16] ≥ 6.5 mm2/smineral oil
DOT 5260 °C (500 °F)180 °C (356 °F)≤ 900 mm2/s≥ 1.5 mm2/ssilicone
DOT 5.1260 °C (500 °F)180 °C (356 °F)≤ 900 mm2/s≥ 1.5 mm2/sglycol ether/borate ester
DOT 5.1 ESP260 °C (500 °F)180 °C (356 °F)≤ 750 mm2/s≥ 1.5 mm2/sglycol ether/borate ester
ISO 4925 Class 3205 °C (401 °F)140 °C (284 °F)≤ 1500 mm2/s≥ 1.5 mm2/s
ISO 4925 Class 4230 °C (446 °F)155 °C (311 °F)≤ 1500 mm2/s≥ 1.5 mm2/s
ISO 4925 Class 5-1260 °C (500 °F)180 °C (356 °F)≤ 900 mm2/s≥ 1.5 mm2/s
ISO 4925 Class 6250 °C (482 °F)165 °C (329 °F)≤ 750 mm2/s≥ 1.5 mm2/s
ISO 4925 Class 7260 °C (500 °F)180 °C (356 °F)≤ 750 mm2/s≥ 1.5 mm2/s
  1. "Wet" defined as 3.7% water by volume

Corrosion

Brake fluids must not corrode the metals used inside components such as calipers, wheel cylinders, master cylinders and ABS control valves. They must also protect against corrosion as moisture enters the system. Additives (corrosion inhibitors) are added to the base fluid to accomplish this. Silicone is less corrosive to paintwork than glycol-ether based DOT fluids. [14]

The advantage of the Citroën LHM mineral oil based brake fluid is the absence of corrosion. Seals may wear out at high mileages but otherwise these systems have exceptional longevity. It cannot be used as a substitute without changing seals due to incompatibility with the rubber. [17] [ user-generated source ]

Compressibility

Brake fluids must maintain a low level of compressibility, even with varying temperatures to accommodate different environmental conditions. This is important to ensure consistent brake pedal feel. As compressibility increases, more brake pedal travel is necessary for the same amount of brake caliper piston force.

Service and maintenance

Glycol-ether (DOT 3, 4, and 5.1) brake fluids are hygroscopic (water absorbing), which means they absorb moisture from the atmosphere under normal humidity levels. Non-hygroscopic fluids (e.g. silicone/DOT 5 and mineral oil based formulations), are hydrophobic, and can maintain an acceptable boiling point over the fluid's service life. Ideally, silicone fluid should be used only to fill non-ABS systems that have not been previously filled with glycol based fluid. Any system that has used glycol-based fluid (DOT 3/4/5.1) will contain moisture; glycol fluid disperses the moisture throughout the system and contains corrosion inhibitors. Silicone fluid does not allow moisture to enter the system, but does not disperse any that is already there, either. A system filled from dry with silicone fluid does not require the fluid to be changed at intervals, only when the system has been disturbed for a component repair or renewal. The United States armed forces have standardised on silicone brake fluid since the 1990s. Silicone fluid is used extensively in cold climates, particularly in Russia and Finland.

Brake fluids with different DOT ratings can not always be mixed. DOT 5 should not be mixed with any of the others as mixing of glycol with silicone fluid may cause corrosion because of trapped moisture. DOT 2 should not be mixed with any of the others. DOT 3, DOT 4, and DOT 5.1 are all based on glycol esters and can be mixed, although it is preferable to completely replace existing fluids with fresh to obtain the specified performance.

Brake fluid is toxic [18] and can damage painted surfaces. [19]

Components

Castor oil-based (pre-DOT, DOT 2)

Glycol-based (DOT 3, 4, 5.1)

Silicone-based (DOT 5)

See also

Related Research Articles

A lubricant is a substance that helps to reduce friction between surfaces in mutual contact, which ultimately reduces the heat generated when the surfaces move. It may also have the function of transmitting forces, transporting foreign particles, or heating or cooling the surfaces. The property of reducing friction is known as lubricity.

<span class="mw-page-title-main">Pneumatics</span> Branch of engineering

Pneumatics is a branch of engineering that makes use of gas or pressurized air.

<span class="mw-page-title-main">Hydraulic fluid</span> Medium to transfer power in hydraulic machinery

A hydraulic fluid or hydraulic liquid is the medium by which power is transferred in hydraulic machinery. Common hydraulic fluids are based on mineral oil or water. Examples of equipment that might use hydraulic fluids are excavators and backhoes, hydraulic brakes, power steering systems, automatic transmissions, garbage trucks, aircraft flight control systems, lifts, and industrial machinery.

<span class="mw-page-title-main">Citroën DS</span> Executive car produced by Citroën

The Citroën DS is a front mid-engined, front-wheel drive executive car manufactured and marketed by Citroën from 1955 to 1975, in fastback/sedan, wagon/estate, and convertible body configurations, across three series of one generation.

<span class="mw-page-title-main">Flux (metallurgy)</span> Chemical used in metallurgy for cleaning or purifying molten metal

In metallurgy, a flux is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.

<span class="mw-page-title-main">Synthetic oil</span> Lubricant consisting of artificially made chemical compounds

Synthetic oil is a lubricant consisting of chemical compounds that are artificially modified or synthesised. Synthetic lubricants can be manufactured using chemically modified petroleum components rather than whole crude oil, but can also be synthesized from other raw materials. The base material, however, is still overwhelmingly crude oil that is distilled and then modified physically and chemically. The actual synthesis process and composition of additives is generally a commercial trade secret and will vary among producers.

<span class="mw-page-title-main">Hydropneumatic suspension</span> Pneumatics

Hydropneumatic suspension is a type of motor vehicle suspension system, designed by Paul Magès, invented by Citroën, and fitted to Citroën cars, as well as being used under licence by other car manufacturers, notably Rolls-Royce, Bmw 5-Series e34 Touring, Maserati and Peugeot. It was also used on Berliet trucks and has been used on Mercedes-Benz cars, where it is known as Active Body Control. The Toyota Soarer UZZ32 "Limited" was fitted with a fully integrated four-wheel steering and a complex, computer-controlled hydraulic Toyota Active Control Suspension in 1991. Similar systems are also widely used on modern tanks and other large military vehicles. The suspension was referred to as fr:Suspension oléopneumatique in early literature, pointing to oil and air as its main components.

An antifreeze is an additive which lowers the freezing point of a water-based liquid. An antifreeze mixture is used to achieve freezing-point depression for cold environments. Common antifreezes also increase the boiling point of the liquid, allowing higher coolant temperature. However, all common antifreeze additives also have lower heat capacities than water, and do reduce water's ability to act as a coolant when added to it.

<span class="mw-page-title-main">O-ring</span> Mechanical, toroid gasket that seals an interface

An O-ring, also known as a packing or a toric joint, is a mechanical gasket in the shape of a torus; it is a loop of elastomer with a round cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, forming a seal at the interface.

A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosion of the cooling system. Some applications also require the coolant to be an electrical insulator.

Triethylene glycol, TEG, or triglycol is a colorless odorless viscous liquid with molecular formula HOCH2CH2OCH2CH2OCH2CH2OH. It is used as a plasticizer for vinyl polymers. It is also used in air sanitizer products, such as "Oust" or "Clean and Pure". When aerosolized it acts as a disinfectant. Glycols are also used as liquid desiccants for natural gas and in air conditioning systems. It is an additive for hydraulic fluids and brake fluids and is used as a base for "smoke machine" fluid in the entertainment industry.

Grease is a solid or semisolid lubricant formed as a dispersion of thickening agents in a liquid lubricant. Grease generally consists of a soap emulsified with mineral or vegetable oil.

<span class="mw-page-title-main">Hydraulic brake</span> Arrangement of braking mechanism

A hydraulic brake is an arrangement of braking mechanism which uses brake fluid, typically containing glycol ethers or diethylene glycol, to transfer pressure from the controlling mechanism to the braking mechanism.

In ground deicing of aircraft, aircraft deicing fluid (ADF), aircraft deicer and anti-icer fluid (ADAF) or aircraft anti-icing fluid (AAF) are commonly used for both commercial and general aviation. Environmental concerns include increased salinity of groundwater where de-icing fluids are discharged into soil, and toxicity to humans and other mammals.

An active suspension is a type of automotive suspension that uses an onboard control system to control the vertical movement of the vehicle's wheels and axles relative to the chassis or vehicle frame, rather than the conventional passive suspension that relies solely on large springs to maintain static support and dampen the vertical wheel movements caused by the road surface. Active suspensions are divided into two classes: true active suspensions, and adaptive or semi-active suspensions. While semi-adaptive suspensions only vary shock absorber firmness to match changing road or dynamic conditions, active suspensions use some type of actuator to raise and lower the chassis independently at each wheel.

<span class="mw-page-title-main">Polyphenyl ether</span> Class of polymers

Phenyl ether polymers are a class of polymers that contain a phenoxy or a thiophenoxy group as the repeating group in ether linkages. Commercial phenyl ether polymers belong to two chemical classes: polyphenyl ethers (PPEs) and polyphenylene oxides (PPOs). The phenoxy groups in the former class of polymers do not contain any substituents whereas those in the latter class contain 2 to 4 alkyl groups on the phenyl ring. The structure of an oxygen-containing PPE is provided in Figure 1 and that of a 2, 6-xylenol derived PPO is shown in Figure 2. Either class can have the oxygen atoms attached at various positions around the rings.

The Federal Motor Vehicle Safety Standards (FMVSS) are U.S. federal vehicle regulations specifying design, construction, performance, and durability requirements for motor vehicles and regulated automobile safety-related components, systems, and design features. They are the U.S. counterpart to the UN Regulations developed by the World Forum for Harmonization of Vehicle Regulations and recognized to varying degree by most countries except the United States. Canada has a system of analogous rules called the Canada Motor Vehicle Safety Standards (CMVSS), which overlap substantially but not completely in content and structure with the FMVSS. The FMVSS/CMVSS requirements differ significantly from the international UN requirements, so private import of foreign vehicles not originally manufactured to North American specifications is difficult or impossible.

In fluid thermodynamics, a heat transfer fluid is a gas or liquid that takes part in heat transfer by serving as an intermediary in cooling on one side of a process, transporting and storing thermal energy, and heating on another side of a process. Heat transfer fluids are used in countless applications and industrial processes requiring heating or cooling, typically in a closed circuit and in continuous cycles. Cooling water, for instance, cools an engine, while heating water in a hydronic heating system heats the radiator in a room.

<span class="mw-page-title-main">DEG monobutyl ether</span> Chemical compound

Diethylene glycol butyl ether is an organic compound, one of several glycol ether solvents. It is a colorless liquid with a low odour and high boiling point. It is mainly used as a solvent for paints and varnishes in the chemical industry, household detergents, brewing chemicals and textile processing.

Federal Motor Vehicle Safety Standard 116 regulates motor vehicle brake fluids in the United States. Like all other Federal Motor Vehicle Safety Standards, FMVSS 116 is administered by the United States Department of Transportation's National Highway Traffic Safety Administration.

References

  1. "Chapter 7 : Basic Hydraulic System Theory" (PDF). Peterverdone.com. Retrieved 2018-07-06.
  2. 1 2 "ISO 4925:2005 - Road vehicles -- Specification of non-petroleum-base brake fluids for hydraulic systems". www.iso.org.
  3. "ISO 4925:2020 - Road vehicles -- Specification of non-petroleum-base brake fluids for hydraulic systems". www.iso.org.
  4. "Online Browsing Platform ISO 4925:2020 - Road vehicles -- Specification of non-petroleum-base brake fluids for hydraulic systems". www.iso.org.
  5. 1 2 "Code of Federal Regulations, § 571.116 Standard No. 116; Motor vehicle brake fluids".
  6. "Viscosity of Automotive Brake Fluids". Anton Paar Wiki. Retrieved 2018-05-25.
  7. Standard No. 116; Motor vehicle brake fluids Code of Federal Regulations, Title 49 - Transportation, Chapter V - Part 571 - Federal Motor Vehicle Safety Standards (49CFR571), Subpart B, Sec. 571.116 Standard No. 116; Motor vehicle brake fluids Archived 2008-12-08 at the Wayback Machine
  8. "What are the different types of brake fluid?". How Stuff Works. 2008-12-01. Retrieved 2018-08-12.
  9. "DOT 5 Brake Fluid: Not for ABS". www.freeasestudyguides.com.
  10. Jackson, Tony; Bardenwerper, Mark L. (March 2016). "Revised Summary of Citroën Hydraulic Fluids". www.citrogsa.com/tony.html.
  11. "Hydragas suspension technical data". Hydragas Register.
  12. "Brake Fluid Exchange and Technology". Partinfo.co.uk. Retrieved 2018-05-16.
  13. "Brake Fluid". Trwaftermarket.com. Retrieved 2018-05-26.
  14. 1 2 3 4 "DOT Brake Fluid vs. Mineral Oil". Epicbleedsolutions.com. Retrieved 2018-05-25.
  15. "49 CFR 571.116 - Standard No. 116; Motor vehicle brake fluids". Gpo.gov. Retrieved 2018-07-06.
  16. "Viscosity of Automotive brake fluid – viscosity table and viscosity chart :: Anton Paar Wiki". Anton Paar. Retrieved 2018-07-06.
  17. "AN EXPLANATION OF BRAKE AND CLUTCH FLUIDS". Xpowerforums.com. Archived from the original on 2008-11-04. Retrieved 2015-05-26.
  18. "MSDS for DOT 3 brake fluid" (PDF). Online.petro-canada.ca. Retrieved 2012-06-04.
  19. "General Tips". Total Motorcycle. Retrieved 2018-05-25.