DRDO Nishant

Last updated
Nishant
Nishant UAV.JPG
Nishant UAV on its launcher
RoleMilitary UAV
Design group Aeronautical Development Establishment
Council of Scientific and Industrial Research-National Aerospace Laboratories
Vehicle Research and Development Establishment
First flightAugust 1996 [1]
StatusDevelopment [2]
Primary user Indian Army
Number built4 [2]

The DRDO Nishant ("End of Night") - is an unmanned aerial vehicle (UAV) developed by India's Aeronautical Development Establishment (ADE), a branch of Defence Research and Development Organisation (DRDO) for the Indian Armed Forces. The Nishant UAV is primarily tasked with intelligence gathering over enemy territory and also for reconnaissance, training, surveillance, target designation, artillery fire correction, damage assessment, ELINT and SIGINT. The UAV has an endurance of four hours and thirty minutes. Nishant has completed development phase and user trials.

Contents

The 380 kg (840 lb) Nishant UAV requires rail-launching from a hydro-pneumatic launcher and is able to be recovered by a parachute system. Launches at a velocity of 45 m/s are carried out in 0.6 second with 100 kW power and subsequent launches can be carried out in intervals of 20 minutes. The Mobile Hydro-Pneumatic Launcher (MHPL) system mounted on a Tatra truck weighs 14,000 kg (31,000 lb) and boasts of a life cycle of 1000 launches before requiring overhaul. Nishant is one of the few UAVs in the world in its weight-class capable of being catapult-launched and recovered by using parachute, thus eliminating the need for a runway as in case of conventional take-off and landing with wheels.

Development

To meet the Army's operational requirement of a RPV (remotely piloted vehicle), it was decided in September 1988 that DRDO would undertake the indigenous development of the UAV. The General Staff Qualitative Requirement (GSQR) was finalised by the Army in May 1990. The Nishant RPV made its first test flight in 1995. In July 1999, for the first time the Indian army deployed its new Nishant UAV system in the fight against guerilla forces backed by Pakistan in Kashmir Valley. Nishant, which had been developed for battlefield surveillance and reconnaissance needs of the Indian Army, was test flown again in early 2002. The indigenous Unmanned Air Vehicle (UAV) Nishant developed by ADE, DRDO had completed its 100th flight by June 15, 2002. [3] The Indian Army has placed an order for 12 Nishant UAVs along with ground support systems. [4] Nishant Unmanned Aerial Vehicle (UAV) developed by DRDO for Indian Army was successfully flight tested near Kolar on 20 June 2008. Nishant has completed development phase and user trials. The present flight tests are pre confirmatory trials before induction into services. [5]

Test flight with Wankel engine

On Sunday, 5 April 2009 DRDO launched a test flight of the Nishant UAV. The main goal was to test the performance of the Wankel engine used on the UAV. An abandoned World War II runway at a village near Kolar played host to the first ever flight of this indigenous rotary engine-powered UAV. The flight took off on early Sunday morning and climbed to an altitude of 1.8 km (5,900 ft) before cruising for a duration of 35 minutes. The air vehicle was recovered safely at the intended place at a dried-up lake, after a total flight duration of 40 min. The engine, a Wankel rotary type, was jointly designed and developed by National Aerospace Laboratories (NAL), Vehicle Research and Development Establishment (VRDE) and Aeronautical Development Establishment (ADE). The provisional flight clearance for the first indigenous prototype engine was given by the certifying agency, the Regional Centre for Military Airworthiness and Certification. The engine was cleared for flight after rigorous ground endurance test runs. The Wankel engine weighs about 25 kg (70 lb), and this engine type is known for its high power-to-weight ratio in a single rotor category.[ citation needed ]

DRDO was satisfied with the test results. The performance of the engine during the flight met the requirements of the first flight of an engine in the air vehicle. This 55 hp indigenous engine is expected to replace the present imported engine of Nishant. The critical core engine, including the special cylinder composite nickelsilicon carbide coating and special aluminium alloy castings, was designed and developed by NAL. VRDE developed engine peripherals such as the ignition and fuel systems and ADE developed flight testing. The reconnaissance UAV, which has completed its user trials with the Indian Army, is expected to be handed over to the army shortly.

Nishant UAV again underwent crucial confirmatory user trials at Pokhran in April 2010. The trials began April 20 and were supposed to last for one week. A senior Army official at Pokhran said the trials are moving forward in a very satisfactory manner. “We are checking three crucial parameters: video quality, tracking ability and fall of gunshot [missed distance after firing]. These input performances are critical to our operations in the forward areas,” the official said. DRDO has delivered the first four UAVs to the Indian Army at a cost of 800 million ($17.9 million). [6]

According to The Times Of India , two UAVs crash-landed in Jaisalmer district near the India-Pakistan border due to change in wind direction on April 28 and April 30. Confirming the news, a DRDO official said, "The user trials were going on and during the flight there were some technical snags owing to which the craft was landed using parachutes." He said, "But the landing was done safely and no one was hurt in the process. Though before our officials could reach to get the craft back, villagers damaged the aircraft and took away some equipment." [7]

On 3 February 2011 Nishant UAV successfully completed confirmatory trials conducted by the Indian Army at Pokhran, Rajasthan [8]

A wheeled version of the Nishant UAV, named panchi, is under taxi trail as of September 2014, will be flight tested soon. UAV is capable of operating from semi-prepared runway, thereby reducing the turnaround time between missions, which is major advantage over the current catapult launched Nishant [9] As per the last report Panchi have been successfully completed Five flights proving the concept of conventional takeoff and landing. Data for aerodynamic, structure integrity and Flight control studies have been generated and analyzed.

Features

Variants

Ground support systems

Launch & recovery

Former operators

Specifications

Data from Rediff, [11] Jane's Defence Weekly [12] and Aviation Week [13]

General characteristics

Performance

Avionics
45 kg (99 lb) electro-optical, infrared or laser sensors

See also

Aircraft of comparable role, configuration, and era

Related Research Articles

<span class="mw-page-title-main">AAI RQ-7 Shadow</span> American unmanned aerial vehicle

The AAI RQ-7 Shadow is an American unmanned aerial vehicle (UAV) used by the United States Army, Australian Army, Swedish Army, Turkish Air Force and Italian Army for reconnaissance, surveillance, target acquisition and battle damage assessment. Launched from a trailer-mounted pneumatic catapult, it is recovered with the aid of arresting gear similar to jets on an aircraft carrier. Its gimbal-mounted, digitally stabilized, liquid nitrogen-cooled electro-optical/infrared (EO/IR) camera relays video in real time via a C-band line-of-sight data link to the ground control station (GCS).

<span class="mw-page-title-main">Sikorsky Cypher</span> Unmanned aerial vehicles developed by Sikorsky Aircraft

The Sikorsky Cypher and Cypher II are types of unmanned aerial vehicles developed by Sikorsky Aircraft. They are vertical takeoff and landing aircraft which use two opposing rotors enclosed in a circular shroud for propulsion.

<span class="mw-page-title-main">GTRE GTX-35VS Kaveri</span> Afterburning turbofan aircraft engine

The GTRE GTX-35VS Kaveri is an afterburning turbofan project developed by the Gas Turbine Research Establishment (GTRE), a lab under the Defence Research and Development Organisation (DRDO) in Bengaluru, India. An Indian design, the Kaveri was originally intended to power production models of the HAL Tejas Light Combat Aircraft (LCA) developed by Hindustan Aeronautics Limited. However, the Kaveri programme failed to satisfy the necessary technical requirements or keep up with its envisaged timelines and was officially delinked from the Tejas programme in September 2008.

<span class="mw-page-title-main">Schiebel Camcopter S-100</span> Austrian UAV rotorcraft

The Schiebel Camcopter S-100 is an Austrian unmanned aerial vehicle (UAV) using a rotorcraft design.

<span class="mw-page-title-main">DRDO Lakshya</span> Indian target drone system

Lakshya is an Indian remotely piloted high speed target drone system developed by the Aeronautical Development Establishment (ADE) of DRDO. A variant Lakshya-1 is used to perform discreet aerial reconnaissance of battlefield and target acquisition.

<span class="mw-page-title-main">BAE Systems HERTI</span> Type of aircraft

The BAE Systems HERTI is an unmanned aerial vehicle (UAV) developed by the British company BAE Systems. HERTI stands for "High Endurance Rapid Technology Insertion" and was developed in Warton, United Kingdom. The HERTI airframe is based on the J-6 Fregata motor glider designed by Jaroslaw Janowski of J&AS Aero Design in Poland. Its first flight was in December 2004 at the Australian Woomera test range where much of the test flight programme has been undertaken. HERTI was also the first UAV to fly in the UK with the flight being certified by the Civil Aviation Authority.

<span class="mw-page-title-main">Nag (missile)</span> Indian air-to-surface missile

The Nag missile, also called "Prospina" for the land-attack version, is an Indian third-generation, all-weather, fire-and-forget, lock-on after launch, anti-tank guided missile (ATGM) with an operational range of 500 m to 20 km depending on variant. It has a single-shot hit probability of 90% and a ten-year, maintenance-free shelf life. The Nag has five variants under development: a land version, for a mast-mounted system; the helicopter-launched Nag (HELINA) also known as Dhruvastra; a "man-portable" version (MPATGM); an air-launched version which will replace the current imaging infra-red (IIR) to millimetric-wave (mmW) active radar homing seeker; and the Nag Missile Carrier (NAMICA) "tank buster", which is a modified BMP-2 infantry fighting vehicle (IFV) produced under license in India by Ordnance Factory Medak (OFMK).

Vehicle Research and Development Establishment (VRDE) is a laboratory of the Defence Research & Development Organization (DRDO) located at Vahannagar near Ahmednagar. Its primary function is research and development of various light tracked, wheeled and specialised vehicles for defence applications.

<span class="mw-page-title-main">DRDO Rustom</span> Type of aircraft

The DRDO Rustom is a medium-altitude long-endurance unmanned air vehicle (UAV) being developed by Defence Research and Development Organisation for the three services, Indian Army, Indian Navy and the Indian Air Force of the Indian Armed Forces. Rustom is derived from the NAL's LCRA developed by a team under the leadership of late Prof Rustom Damania in the 1980s. The UAV will have structural changes and a new engine.

Kapothaka was a technology demonstrator mini-UAV for reconnaissance. The Kapothaka which means “dove” is believed to be a predecessor of Nishant UAV system.

<span class="mw-page-title-main">DRDO Ghatak</span> Type of aircraft

Ghatak is an autonomous jet powered stealthy unmanned combat air vehicle (UCAV), being developed by Aeronautical Development Establishment (ADE) of the Defence Research and Development Organisation (DRDO) for the Indian Air Force. The design work on the UCAV is to be carried out by Aeronautical Development Agency (ADA). Autonomous Unmanned Research Aircraft (AURA) was a tentative name for the UCAV. Details of the project are classified.

The "Pawan" is a joint venture unmanned aerial vehicle (UAV) project being developed by India's ADE, a division of DRDO and the Israel Aircraft Industries, for the Indian Armed Forces which began in 2006. The Pawan will be comparable in size and capabilities to Israel's Elbit Hermes 180, EyeView and Silver Arrow drones. The 120-kilogram Pawan will have day-and-night surveillance capability, an endurance of five hours and a range of 150 kilometers.

<span class="mw-page-title-main">Sudarshan laser-guided bomb</span> Laser guided bomb

Sudarshan is an Indian laser-guided bomb kit, developed by Aeronautical Development Establishment (ADE), a DRDO lab with technological support from another DRDO lab Instruments Research and Development Establishment (IRDE), for the Indian Air Force (IAF).

The Imperial Eagle is an Indian light-weight mini-unmanned aerial vehicle (UAV) developed by the Aeronautical Development Establishment, National Aerospace Laboratories and supported by private vendors. Its primary users will be the National Security Guard and the military services.

<span class="mw-page-title-main">DRDO Netra</span> Type of aircraft

The DRDO Netra is an Indian, light-weight, autonomous UAV for surveillance and reconnaissance operations. It has been jointly developed by the Research and Development Establishment (R&DE), and IdeaForge, a Mumbai-based private firm.

<span class="mw-page-title-main">DRDO Abhyas</span> Aerial target drone

The DRDO Abhyas is a high-speed expendable aerial target (HEAT) being built by the Aeronautical Development Establishment (ADE) of the Defence Research and Development Organisation (DRDO) for the Indian Armed Forces.

Aeronautical Test Range (ATR), Chitradurga is an out-door testing and evaluation facility set up by DRDO exclusively for unmanned and manned aircraft. The ATR is under the command of the Aeronautical Development Establishment (ADE).

<span class="mw-page-title-main">TAPAS-BH-201</span> Indian unmanned aerial vehicle

The Tactical Airborne Platform for Aerial Surveillance-Beyond Horizon-201 or TAPAS BH-201 is a medium-altitude long-endurance (MALE) unmanned aerial vehicle (UAV) being developed in India by Aeronautical Development Establishment (ADE) on the lines of General Atomics MQ-1 Predator.

<span class="mw-page-title-main">HAL Combat Air Teaming System</span> Indian air teaming system

The HAL Combat Air Teaming System (CATS) is an Indian unmanned and manned combat aircraft air teaming system being developed by Hindustan Aeronautics Limited (HAL). The system will consist of a manned fighter aircraft acting as "mothership" of the system and a set of swarming UAVs and UCAVs governed by the mothership aircraft. A twin-seated HAL Tejas is likely to be the mothership aircraft. Various other sub components of the system are currently under development and will be jointly produced by HAL, National Aerospace Laboratories (NAL), Defence Research and Development Organisation (DRDO) and Newspace Research & Technologies.

This article consists of projects of the Defence Research and Development Organisation.

References

  1. "Directory: unmanned air vehicles". Flight International. Reed Business Information. 21–27 June 2005. p. 54.
  2. 1 2 "DRDO claims Nishant programme still alive after crash". 26 February 2016.
  3. "Unmanned air vehicle Nishant completes 100 flights". News.indiainfo.com. 2005-06-15. Archived from the original on 2011-09-27. Retrieved 2012-01-28.
  4. "DRDO Working On Large UAVs; Army Orders 12 Nishant UAVs". India-defence.com. Retrieved 2012-01-28.
  5. Successful Flight Tests of Nishant UAV [usurped]
  6. "Nishant undergoes trial". Bharat-rakshak.com. 2010-04-22. Archived from the original on 2011-06-08. Retrieved 2012-01-28.
  7. "UAVs 'crash-landed' in Jaisalmer village". The Times of India . 2010-05-08. Archived from the original on 2011-08-11. Retrieved 2012-01-28.
  8. Mathews, Neelam (4 February 2011). "Indian Army Approves Nishant UAV". Aerospace Daily & Defense Report. Aviation Week.
  9. 1 2 "UAV Panchi Warms Up for Maiden Flight". The New Indian Express. Archived from the original on September 20, 2014.
  10. "Homegrown Nishant Drone's Perfect Crash Record". 19 November 2015. Retrieved 2 June 2018.
  11. "Indian Army to try out DRDO's spy plane". Rediff.com . Press Trust of India. 6 June 2008.
  12. Bedi, Rahul (17 February 1999). "India set to put Nishant UAV to the real test". Jane's Defence Weekly. 31 (7). Jane's Information Group.
  13. "In-Production and Under-Development Unmanned Aircraft" (PDF). Aviation Week. Retrieved 1 June 2018.
  14. "DRDO Nishant".