Nishant | |
---|---|
General information | |
Type | Military UAV |
Designer | ARDE CISR-NAL R&DE(E) |
Status | "Abandoned project" |
Primary user | Indian Army |
Number built | 4 [1] |
History | |
Introduction date | 2011 |
First flight | August 1996 [2] |
Retired | 2015 |
The DRDO Nishant ("End of Night") - is an unmanned aerial vehicle (UAV) developed by India's Aeronautical Development Establishment (ADE), a branch of Defence Research and Development Organisation (DRDO) for the Indian Armed Forces. The Nishant UAV is primarily tasked with intelligence gathering over enemy territory and also for reconnaissance, training, surveillance, target designation, artillery fire correction, damage assessment, ELINT and SIGINT. The UAV has an endurance of four hours and thirty minutes. Nishant has completed development phase and user trials. However, further development of the project was cancelled after all of the four prototypes and production UAVs crashed due to various and unknown reasons. [3]
To meet the Army's operational requirement of a RPV (remotely piloted vehicle), it was decided in September 1988 that DRDO would undertake the indigenous development of the UAV. The General Staff Qualitative Requirement (GSQR) was finalised by the Army in May 1990. The Nishant RPV made its first test flight in 1995. In July 1999, for the first time the Indian army deployed its new Nishant UAV system in the fight against guerrilla forces backed by Pakistan in Kashmir Valley. Nishant, which had been developed for battlefield surveillance and reconnaissance needs of the Indian Army, was test flown again in early 2002. The indigenous Unmanned Air Vehicle (UAV) Nishant developed by ADE, DRDO had completed its 100th flight by 15 June 2002. [4] The Indian Army had placed an order for 12 Nishant UAVs along with ground support systems by 2007. [5] [6] Nishant Unmanned Aerial Vehicle (UAV) developed by DRDO for Indian Army was successfully flight tested near Kolar on 20 June 2008. Nishant has completed development phase and user trials. The present flight tests are pre confirmatory trials before induction into services. [7]
On Sunday 5 April 2009, DRDO launched a test flight of the Nishant UAV. The main goal was to test the performance of the indigenous Wankel engine used on the UAV. An abandoned World War II runway at a village near Kolar played host to the first ever flight of this rotary engine-powered UAV. The flight took off on early Sunday morning and climbed to an altitude of 1.8 km (5,900 ft) before cruising for a duration of 35 minutes. The air vehicle was recovered safely at the intended place at a dried-up lake, after a total flight duration of 40 min. The engine, a Wankel rotary type, was jointly designed and developed by National Aerospace Laboratories (NAL), Vehicle Research and Development Establishment (VRDE) and Aeronautical Development Establishment (ADE). The provisional flight clearance for the first indigenous prototype engine was given by the certifying agency, the Regional Centre for Military Airworthiness and Certification. The engine was cleared for flight after rigorous ground endurance test runs. The Wankel engine weighs about 25 kg (70 lb), and this engine type is known for its high power-to-weight ratio in a single rotor category.[ citation needed ]
DRDO was satisfied with the test results. The performance of the engine during the flight met the requirements of the first flight of an engine in the air vehicle. This 55 hp indigenous engine is expected to replace the present imported engine of Nishant. The critical core engine, including the special cylinder composite nickel–silicon carbide coating and special aluminium alloy castings, was designed and developed by NAL. VRDE developed engine peripherals such as the ignition and fuel systems and ADE developed flight testing. The reconnaissance UAV, which has completed its user trials with the Indian Army, is expected to be handed over to the army shortly.
Nishant UAV again underwent crucial confirmatory user trials at Pokhran in April 2010. The trials began April 20 and were supposed to last for one week. A senior Army official at Pokhran said the trials are moving forward in a very satisfactory manner. “We are checking three crucial parameters: video quality, tracking ability and fall of gunshot [missed distance after firing]. These input performances are critical to our operations in the forward areas,” the official said. DRDO has delivered the first four UAVs to the Indian Army at a cost of ₹ 800 million (equivalent to ₹1.8 billionorUS$22 million in 2023)800 million ₹ ($17.9 million). [8]
According to The Times Of India , two UAVs crash-landed in Jaisalmer district near the India-Pakistan border due to change in wind direction on April 28 and April 30. Confirming the news, a DRDO official said, "The user trials were going on and during the flight there were some technical snags owing to which the craft was landed using parachutes." He said, "But the landing was done safely and no one was hurt in the process. Though before our officials could reach to get the craft back, villagers damaged the aircraft and took away some equipment." [9]
On 3 February 2011 Nishant UAV successfully completed confirmatory trials conducted by the Indian Army at Pokhran, Rajasthan. [10]
By 2011, four UAVs were delivered after long delays as part of the first phase of development. [11]
On 4 and 19 November 2015, the last two of the four Nishant UAV crashed in Pokhran, Rajasthan while earlier in April the same year, the other two Nishant UAVs crashed near Jaisalmer. The Nishant programme, costing a total of ₹ 90 crore (equivalent to ₹120 croreorUS$14 million in 2023), had been closed. The second phase as a part of which 8 UAVs and 2 ground systems were to be delivered was called off. The crashes were speculated due to technical issues in its recovery phase. The unit cost of the aircraft was ₹ 22 crore (equivalent to ₹29 croreorUS$3.5 million in 2023). [3] [11] [12] [1]
A wheeled version of the Nishant UAV, named Panchi, is under taxi trail as of September 2014, will be flight tested soon. UAV is capable of operating from semi-prepared runway, thereby reducing the turnaround time between missions, which is major advantage over the current catapult launched Nishant. [13] As per the last report Panchi have been successfully completed 5 flights proving the concept of conventional take-off and landing. Data for aerodynamic, structure integrity and Flight control studies have been generated and analysed.[ citation needed ]
The 380 kg (840 lb) Nishant UAV requires rail-launching from a hydro-pneumatic launcher and is able to be recovered by a parachute system. Launches at a velocity of 45 m/s are carried out in 0.6 second with 100 kW power and subsequent launches can be carried out in intervals of 20 minutes. The Mobile Hydro-Pneumatic Launcher (MHPL) system mounted on a Tatra truck weighs 14,000 kg (31,000 lb) and boasts of a life cycle of 1000 launches before requiring overhaul. Nishant is one of the few UAVs in the world in its weight-class capable of being catapult-launched and recovered by using parachute, thus eliminating the need for a runway as in case of conventional take-off and landing with wheels. [14] [15]
Data from Rediff, [18] Jane's Defence Weekly [19] and Aviation Week [20]
General characteristics
Performance
Avionics
45 kg (99 lb) electro-optical, infrared or laser sensors
Aircraft of comparable role, configuration, and era
Pinaka is a multiple rocket launcher produced in India and developed by the Defence Research and Development Organisation (DRDO) for the Indian Army. It is also called India's Grad missile system as it's characteristics are derived from BM-21 Grad. The system has a maximum range of 45 km (28 mi) for Mark-I Enhanced and 90 km (56 mi) for Mark-II ER version, and can fire a salvo of 12 HE rockets per launcher in 44 seconds. The system is mounted on a Tatra truck for mobility. Pinaka saw service during the Kargil War, where it was successful in neutralising Pakistani positions on the mountain tops. It has since been inducted into the Indian Army in large numbers.
The GTRE GTX-35VS Kaveri is an afterburning turbofan project under development by the Gas Turbine Research Establishment (GTRE), a lab under the Defence Research and Development Organisation (DRDO) in Bengaluru, India. An Indian design, the Kaveri was originally intended to power production models of the HAL Tejas Light Combat Aircraft (LCA) developed by Hindustan Aeronautics Limited. However, the Kaveri programme failed to satisfy the necessary technical requirements on time and was officially delinked from the Tejas programme in September 2008.
Nirbhay is a long range, all-weather, subsonic cruise missile designed and developed in India by the Aeronautical Development Establishment (ADE) which is under Defence Research and Development Organisation (DRDO). The missile can be launched from multiple platforms and is capable of carrying conventional and nuclear warheads. It is currently deployed in limited numbers in Line of Actual Control (LAC) during standoff with China.
Lakshya is a remotely piloted high speed Indian target drone system developed by the Aeronautical Development Establishment (ADE) of DRDO. A variant Lakshya-1 is used to perform discreet aerial reconnaissance of battlefield and target acquisition.
The Nag missile, also called "Prospina" for the land-attack version, is an Indian third-generation, all-weather, fire-and-forget, lock-on after launch, anti-tank guided missile (ATGM) with an operational range of 500 m to 20 km depending on variant. It has a single-shot hit probability of 90% and a ten-year, maintenance-free shelf life. The Nag has five variants under development: a land version, for a mast-mounted system; the helicopter-launched Nag (HELINA) also known as Dhruvastra; a "man-portable" version (MPATGM); an air-launched version which will replace the current imaging infra-red (IIR) to millimetric-wave (mmW) active radar homing seeker; and the Nag Missile Carrier (NAMICA) "tank buster", which is a modified BMP-2 infantry fighting vehicle (IFV) produced under license in India by Ordnance Factory Medak (OFMK).
Aeronautical Development Establishment is a laboratory of India's Defence Research and Development Organisation. Located in Bangalore, its primary function is research and development in the field of military aviation.
Vehicle Research and Development Establishment (VRDE) is a laboratory of the Defence Research & Development Organization (DRDO) located at Vahannagar near Ahmednagar. Its primary function is research and development of various light tracked, wheeled and specialised vehicles for defence applications.
The DRDO Rustom is a family of medium-altitude long-endurance (MALE) unmanned air vehicle (UAV) being developed by the Defence Research and Development Organisation (DRDO) for the three services, Indian Army, Indian Navy and the Indian Air Force, of the Indian Armed Forces. Rustom is derived from the NAL's LCRA developed by a team under the leadership of late Professor Rustom Damania in the 1980s. The UAV will have structural changes and a new engine.
Kapothaka was a technology demonstrator mini-UAV for reconnaissance. The Kapothaka which means “dove” is believed to be a predecessor of Nishant UAV system.
Ghatak (pronounced: gʰɑːt̪ək; lit. 'Deadly' in Sanskrit), initially designated as Indian Unmanned Strike Air Vehicle (IUSAV), is an autonomous jet powered stealthy unmanned combat aerial vehicle (UCAV), being developed by Aeronautical Development Establishment (ADE) of the Defence Research and Development Organisation (DRDO) for the Indian Air Force. The design work on the UCAV is to be carried out by Aeronautical Development Agency (ADA). Autonomous Unmanned Research Aircraft (AURA) was a tentative name for the UCAV. Details of the project are classified.
The Pawan is a joint venture unmanned aerial vehicle (UAV) project being developed by India's ADE, a division of DRDO and the Israel Aircraft Industries, for the Indian Armed Forces which began in 2006. The Pawan will be comparable in size and capabilities to Israel's Elbit Hermes 180, EyeView and Silver Arrow drones. The 120-kilogram Pawan will have day-and-night surveillance capability, an endurance of five hours and a range of 150 kilometers.
Sudarshan is an Indian laser-guided bomb kit, developed by Aeronautical Development Establishment (ADE), a DRDO lab with technological support from another DRDO lab Instruments Research and Development Establishment (IRDE), for the Indian Air Force (IAF).
The Imperial Eagle is an Indian light-weight mini-unmanned aerial vehicle (UAV) developed by the Aeronautical Development Establishment, National Aerospace Laboratories and supported by private vendors. Its primary users will be the National Security Guard and the military services.
The DRDO Abhyas is a high-speed expendable aerial target being built by the Aeronautical Development Establishment (ADE) of the Defence Research and Development Organisation (DRDO) for the Indian Armed Forces.
HAL RUAV-200 is an unmanned rotorcraft project being developed by Hindustan Aeronautics Limited for the Indian Army and the Indian Navy.
Aeronautical Test Range (ATR), Chitradurga is an out-door testing and evaluation facility set up by the Defence Research and Development Organisation (DRDO) exclusively for unmanned and manned aircraft. The ATR is under the command of the Aeronautical Development Establishment (ADE).
The Tactical Airborne Platform for Aerial Surveillance Beyond Horizon-201 or TAPAS BH-201(Sanskrit: तपस्; lit. Heat) is a medium-altitude long-endurance (MALE) unmanned aerial vehicle (UAV) being developed in India by Aeronautical Development Establishment (ADE) on the lines of General Atomics MQ-1 Predator.
Akash - New generation abbreviated as Akash-NG is a mid-ranged mobile surface-to-air missile defense system developed by the Defence Research and Development Organisation (DRDO) and produced by Bharat Dynamics Limited (BDL) and Bharat Electronics (BEL).
The HAL Combat Air Teaming System (CATS) is an Indian unmanned and manned combat aircraft air teaming system being developed by Hindustan Aeronautics Limited (HAL). The system will consist of a manned fighter aircraft acting as "mothership" of the system and a set of swarming UAVs and UCAVs governed by the mothership aircraft. A twin-seated HAL Tejas is likely to be the mothership aircraft. Various other sub components of the system are currently under development and will be jointly produced by HAL, National Aerospace Laboratories (NAL), Defence Research and Development Organisation (DRDO) and Newspace Research & Technologies.
The Very Short Range Air Defence System, or VSHORADS, is a fourth generation, man-portable air-defense system (MANPADS) developed by Research Centre Imarat (RCI), a research lab under Defence Research and Development Organisation (DRDO), located in Hyderabad. Multiple DRDO laboratories along with Indian industry partners are participating in the project. It is designed for anti-aircraft warfare and neutralising low altitude aerial threats at short ranges.