Gas Turbine Research Establishment

Last updated

Gas Turbine Research Establishment
Former name
Gas Turbine Research Centre (GTRC)
Established1959
Field of research
Aerogas turbine technology
Director Shri. Dr. S V Ramana Murthy
Location Bengaluru, Karnataka, India
Operating agency
Defence Research and Development Organisation
Website GTRE
GTRE GTX-35VS Kaveri Kaveri aero india.jpg
GTRE GTX-35VS Kaveri
GTRE GTX-35VS Kaveri GTX-35VS Kaveri.jpg
GTRE GTX-35VS Kaveri

Gas Turbine Research Establishment (GTRE) is a laboratory of the Defence Research and Development Organisation (DRDO). Located in Bengaluru, its primary function is research and development of aero gas-turbines for Military aircraft. As a spin-off effect, GTRE has been developing marine gas-turbines also.

Contents

It was initially known as GTRC (Gas Turbine Research Centre), created in 1959 in No.4 BRD Air Force Station, Kanpur, Uttar Pradesh. In November 1961 it was brought under DRDO, renamed to GTRE and moved to Bengaluru, Karnataka. [1]

Products

Principal achievements of Gas Turbine Research Establishment include:

GTX Kaveri

GTX-35VS Kaveri engine was intended to power production models of HAL Tejas. [3]

Defending the program GTRE mentioned reasons for delay including:

Both hurdles having been cleared, GTRE intended to continue work on the AMCA (future generation fighter craft).

This program was abandoned in 2014.

Kaveri Marine Gas Turbine (KMGT)

Kaveri Marine Gas Turbine is a design spin-off from the Kaveri engine, designed for Indian combat aircraft. Using the core of the Kaveri engine, GTRE added low-pressure compressor and turbine as a gas generator and designed a free power turbine to generate shaft power for maritime applications. [4]

The involvement of Indian Navy in the development and testing of the engine has given a tremendous boost to the programme. The base frame for KMGT was developed by private player Larsen & Toubro (L&T). [5]

Ghatak

The Ghatak engine will be a 52-kilonewton dry variant of the Kaveri aerospace engine and will be used in the UCAV (Unmanned Combat Aerial Vehicles). The Government of India has cleared a funding of 2,650 crores ($394 Million) for the project. [6]

Manik Engine/Small Turbo Fan Engine (STFE)

GTRE is developing a new 4.5 kN thrust turbofan engine to power Nirbhay cruise missile and future UAV, Long range AshM/LAM cruise missile systems. GTRE is working fast to add test capabilities and infrastructure to test the Manik engine. [7] In October 2022, STFE was successfully flight tested. [8]

Testing

The KMGT was tested on the Marine Gas Turbine test bed, an Indian Navy facility at Vishakhapatnam. [9]

The engine has been tested to its potential of 12 MW at ISA SL 35 °C condition, a requirement of the Navy to propel SNF class ships, such as the Rajput class destroyers. [10]

Related Research Articles

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Afterburner</span> Turbojet engine component

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption.

<span class="mw-page-title-main">Rolls-Royce Pegasus</span> 1950s British turbofan aircraft engine

The Rolls-Royce Pegasus, formerly the Bristol Siddeley Pegasus, is a British turbofan engine originally designed by Bristol Siddeley. It was manufactured by Rolls-Royce plc. The engine is not only able to power a jet aircraft forward, but also to direct thrust downwards via swivelling nozzles. Lightly loaded aircraft equipped with this engine can manoeuvre like a helicopter. In particular, they can perform vertical takeoffs and landings. In US service, the engine is designated F402.

<span class="mw-page-title-main">Eurojet EJ200</span> Military low bypass turbofan

The Eurojet EJ200 is a military low-bypass turbofan used as the powerplant of the Eurofighter Typhoon. The engine is largely based on the Rolls-Royce XG-40 technology demonstrator, which was developed in the 1980s. The EJ200 is built by the EuroJet Turbo GmbH consortium. The EJ200 is also used in the Bloodhound LSR supersonic land speed record attempting car.

<span class="mw-page-title-main">Turbo-Union RB199</span> Aircraft turbofan jet engine

The Turbo-Union RB199 is a turbofan jet engine designed and built in the early 1970s by Turbo-Union, a joint venture between Rolls-Royce, MTU and Aeritalia. The only production application was the Panavia Tornado.

<span class="mw-page-title-main">Rolls-Royce Olympus</span> Supersonic turbojet engine with afterburner

The Rolls-Royce Olympus was the world's second two-spool axial-flow turbojet aircraft engine design, first run in May 1950 and preceded only by the Pratt & Whitney J57, first-run in January 1950. It is best known as the powerplant of the Avro Vulcan and later models in the Concorde SST.

<i>Rajput</i>-class destroyer Class of modified Kashin class guided missile destroyers built for Indian Navy

The Rajput-class guided-missile destroyers built for the Indian Navy are modified versions of Soviet Kashin-class destroyers. They are also known as Kashin-II class. The ships were built in the former Soviet Union after considerable Indian design modifications to the Kashin design. These included the replacement of the helicopter pad in the original design with a flight elevator, as well as major changes to the electronics and combat systems. Five units were built for export to India in the 1980s. All units are currently attached to the Eastern Naval Command.

<span class="mw-page-title-main">General Electric F404</span> Turbofan aircraft engine family

The General Electric F404 and F412 are a family of afterburning turbofan engines in the 10,500–19,000 lbf (47–85 kN) class. The series is produced by GE Aerospace. Partners include Volvo Aero, which builds the RM12 variant. The F404 was developed into the larger F414 turbofan, as well as the experimental GE36 civil propfan.

<span class="mw-page-title-main">General Electric F414</span> American afterburning turbofan engine

The General Electric F414 is an American afterburning turbofan engine in the 22,000-pound thrust class produced by GE Aerospace. The F414 originated from GE's widely used F404 turbofan, enlarged and improved for use in the Boeing F/A-18E/F Super Hornet. The engine was developed from the F412 non-afterburning turbofan planned for the A-12 Avenger II, before it was canceled.

<span class="mw-page-title-main">Volvo RM12</span> Jet engine

Reaktionsmotor 12 (RM12) is a low-bypass afterburning turbofan jet engine developed for the Saab JAS 39 Gripen fighter. A version of the General Electric F404, the RM12 was produced by Volvo Aero. The last of the 254 engines was produced on 24 May 2011, at which time it had reached 160,000 flight hours without any serious incidents.

<span class="mw-page-title-main">Bristol Siddeley Orpheus</span> 1957 turbojet aircraft engine family by Bristol Siddeley

The Bristol Siddeley Orpheus is a single-spool turbojet developed by Bristol Siddeley for various light fighter/trainer applications such as the Folland Gnat and the Fiat G.91. Later, the Orpheus formed the core of the first Bristol Pegasus vectored thrust turbofan used in the Harrier family.

<span class="mw-page-title-main">GTRE GTX-35VS Kaveri</span> Afterburning turbofan aircraft engine

The GTRE GTX-35VS Kaveri is an afterburning turbofan project developed by the Gas Turbine Research Establishment (GTRE), a lab under the Defence Research and Development Organisation (DRDO) in Bengaluru, India. An Indian design, the Kaveri was originally intended to power production models of the HAL Tejas Light Combat Aircraft (LCA) developed by Hindustan Aeronautics Limited. However, the Kaveri programme failed to satisfy the necessary technical requirements or keep up with its envisaged timelines and was officially delinked from the Tejas programme in September 2008.

<span class="mw-page-title-main">Nirbhay</span> Indian subsonic cruise missile in limited service and further development

Nirbhay is a long range, all-weather, subsonic Cruise Missile designed and developed in India by the Aeronautical Development Establishment (ADE) which is under Defence Research and Development Organisation (DRDO). The missile can be Launched from Multiple Platforms and is capable of carrying conventional and nuclear warheads. It is currently deployed in limited numbers in Line of Actual Control (LAC) during standoff with China.

<span class="mw-page-title-main">Rolls-Royce/Snecma Olympus 593</span> 1960s British/French turbojet aircraft engine

The Rolls-Royce/Snecma Olympus 593 was an Anglo-French turbojet with reheat, which powered the supersonic airliner Concorde. It was initially a joint project between Bristol Siddeley Engines Limited (BSEL) and Snecma, derived from the Bristol Siddeley Olympus 22R engine. Rolls-Royce Limited acquired BSEL in 1966 during development of the engine, making BSEL the Bristol Engine Division of Rolls-Royce.

<span class="mw-page-title-main">Power Jets W.2</span> British turbojet engine

The Power Jets W.2 was a British turbojet engine designed by Frank Whittle and Power Jets Ltd. Like the earlier Power Jets W.1, the reverse-flow combustion configuration included a double-sided centrifugal compressor, 10 combustion chambers and an axial-flow turbine with air-cooled disc. It entered production as the Rolls-Royce Welland and was the first UK jet engine to power operational aircraft, the Gloster Meteor.

<span class="mw-page-title-main">Brandner E-300</span>

The Brandner E-300 was an Egyptian turbojet engine, developed for the Helwan HA-300 light jet fighter.

<span class="mw-page-title-main">DRDO Ghatak</span> Type of aircraft

Ghatak is an autonomous jet powered stealthy unmanned combat air vehicle (UCAV), being developed by Aeronautical Development Establishment (ADE) of the Defence Research and Development Organisation (DRDO) for the Indian Air Force. The design work on the UCAV is to be carried out by Aeronautical Development Agency (ADA). Autonomous Unmanned Research Aircraft (AURA) was a tentative name for the UCAV. Details of the project are classified.

The Packard XJ49 was the first U.S. designed turbofan aircraft engine, and was developed by the Packard Motor Co. in the 1940s.

<span class="mw-page-title-main">DRDO Abhyas</span> Aerial target drone

The DRDO Abhyas is a high-speed expendable aerial target (HEAT) being built by the Aeronautical Development Establishment (ADE) of the Defence Research and Development Organisation (DRDO) for the Indian Armed Forces.

<span class="mw-page-title-main">IHI Corporation XF5</span> 2010s Japanese turbofan aircraft engine

The Ishikawajima-Harima Heavy Industries (IHI) XF5 is a low bypass turbofan engine developed in Japan by Ishikawajima-Harima Heavy Industries for the Mitsubishi X-2 Shinshin (ATD-X).

References

  1. "About Us | Defence Research and Development Organisation - DRDO, Ministry of Defence, Government of India". www.drdo.gov.in. Retrieved 29 October 2022.
  2. 1 2 3 4 5 "Gas Turbine Research Establishment". Nuclear Threat Initiative. James Martin Center for Nonproliferation Studies, Middlebury Institute of International Studies. 16 November 2021. Retrieved 10 January 2024.
  3. Gunston, Bill (Ed.) (15 June 2006). "GTRE Kaveri" in Jane’s Aero-Engines, Issue 14. Coulsdon, Surrey, UK: Jane's Information Group Limited. ISBN   0-7106-1405-5.
  4. "DRDO develops marine gas turbine engine for Indian Navy". Newindpress.com. Retrieved 28 January 2012.[ permanent dead link ]
  5. "India speeds up work on local marine gas turbine production - ET EnergyWorld". ETEnergyworld.com. Retrieved 10 January 2024.
  6. Bazaar, The American (14 December 2015). "Project Ghatak: India to make indigenous stealth combat drones". The American Bazaar. Retrieved 8 July 2016.
  7. "Nirbhay cruise missile to be tested with 'desi' engine in future". The Week. 16 April 2019. Retrieved 26 August 2019.
  8. "Annual Report 2022-23" (PDF). Ministry of Defence. Government of India. Retrieved 30 March 2024.
  9. "Demonstration of 12 MW Kaveri Marine Gas Turbine for Indian Navy | Frontier India - News, Analysis, Opinion". Frontier India. 17 July 2008. Archived from the original on 18 March 2012. Retrieved 28 January 2012.
  10. Kar, Sitanshu (17 July 2008). "Modified Kaveri Engine to Propel Indian Navy Ships". Press Information Bureau, Government of India. Retrieved 12 January 2019.