This article may be confusing or unclear to readers.(January 2012) |
Friction spinning or DREF spinning is a textile technology that is suitable for spinning coarse counts of yarns and technical core-wrapped yarns. DREF yarns are bulky with low tensile strength, making them suitable for blankets and mop yarns. They can be spun from asbestos , carbon fibres and are capable of being made into filters for water systems.[ clarification needed ] Yarns such as Rayon and Kevlar can be spun using this method. The technology was developed around 1975 by Dr. Ernst Fehrer.
There are three current technologies used today for spinning fibres:
Friction spinning is the fastest of all these techniques though the yarn is irregular and bulkier, making it suitable only for some applications.
The mechanism of yarn formation consists of three distinct operations: feeding of fibres, fibre integration and twist insertion.
The individual fibres are transported by air currents and deposited in the spinning zone. The mode of fibre feed has a particular effect on fibre extent and fibre configuration in yarn and on its properties. There are two methods of fibre feed:
The fibres are fed directly onto the rotating fibre mass that[ clarification needed ] outer part of the yarn tail.
The fibres are first accumulated on the in-going roll and then transferred to the yarn tail.
The fibres assembles through a feed tube onto a yarn core/tail within the shear field, is provided by two rotating spinning drums and the yarn core is in between them. The shear causes[ clarification needed ] sheath fibres to wrap around the yarn core. The fibre orientation is highly dependent on the decelerating fibres arriving at the assembly point through the turbulent flow. The fibres in the friction drum have two probable methods for integration of incoming fibres to the sheath. One method, the fibre assembles completely on to perforated drum before their transfer to the rotating sheath. In the other method, fibres are laid directly on to rotating sheath.
There has been much research on the twisting process in friction spinning. In friction spinning, the fibres are applied twist with more or less one at a time without cyclic differentials in tension in the twisting zone. Therefore, fibre migration may not take place in friction spun yarns. The mechanism of twist insertion for core type friction spinning and open end friction spinning are different, which are described below.
In core type friction spinning, the core, made of a filament or a bundle of staple fibres, is false twisted by the spinning drum. The sheath fibres are deposited on the false twisted core surface and are wrapped helically over the core with varying helix angles. It is believed that the false twist in the core gets removed once the yarn is emerged from the spinning drums, so that this yarn has a virtually twist-less core. However, it is quite possible for some amount of false twist to remain in the fact that the sheath entraps it during yarn formation in the spinning zone.
In open end type friction spinning the fibres in the yarn are integrated as a stacked cone. The fibres in the surface of the yarn found more compact and good packing density than the axial fibres in the yarn.
The yarn tail can be considered as a loosely constructed conical mass of fibres, formed at the nip of the spinning drums. It is of very porous and lofty structure. The fibres rotating at very high speed.
Dr. Ernst Fehrer (1919-2001) invented and patented the DREF friction spinning process in 1973. He had begun work on the development of this alternative to mule, ring and rotor open end spinning with the objective of surmounting the physico-mechanical limits on capacity in yarn engineering, enhancing the production speeds. The system was named using letters from his honorific and name. His company Dr. Ernst Fehrer AG, Textilmaschinenfabrik, was based in Linz-Leonding, Austria. He died in December 2000 at age 81 having produced more than 1000 patents.
Fehrer began his career in research, development and inventing at age 14 writing his first patent at 18. He developed a high-speed needle loom with counterbalancing technology as well as the "DREF"system. In 1988, Fehrer received the TAPPI Nonwovens Division Award for his contributions to nonwovens manufacturing technology, and in 1994 Fehrer received Textile World's first Lifetime Achievement Award. [1]
The Dref I was in development in 1975; a three-head machine, and in 1977 the first DREF 2 for the coarse yarn count range came onto the market. In view of its success, Dr. Fehrer then created the DREF 3, which was designed for the medium yarn count range and made its debut at the ITMA ’79 in Hanover, before entering serial production in 1981.
New generations of the DREF 2 followed in 1986 and 1994 and the DREF 3/96 was launched at the ITMA in Milan. The 1999 ITMA in Paris witnessed the arrival of the DREF 2000, the first of which was sold prior to the fair. Full production of the DREF 2000 commenced in the autumn of 1999 in co-ordination with presentations at the ATME, USA and the SIMAT in Argentina. In 2001, the DREF 2000 also went on display in Asia at the ITMA Singapore and in Central America at the EXINTEX, Mexico.
Fehrer entered co-operations with professional textile companies to develop the technology; Rieter AG in Switzerland and Oerlikon Schlafhorst in Germany. With this co-operation the last machine developed by DREF was the DREF 3000, which was available for testing in the new facility in Linz, Austria in 2001. Saurer AG purchased Fehrer AG in 2005. DREFCORP, along with all its associated patents and intellectual property was purchased in 2007 by Nordin Technologies – a Malaysian company – that continues to develop and manufacture DREF 2000 and DREF 3000 machines as well as continuing to serve the international market with parts for the original Fehrer Dref II, Dref III, Dref 2000 and Dref 3000 friction spinning machines. [2]
Spinning is a twisting technique to form yarn from fibers. The fiber intended is drawn out, twisted, and wound onto a bobbin. A few popular fibers that are spun into yarn other than cotton, which is the most popular, are viscose, animal fibers such as wool, and synthetic polyester. Originally done by hand using a spindle whorl, starting in the 500s AD the spinning wheel became the predominant spinning tool across Asia and Europe. The spinning jenny and spinning mule, invented in the late 1700s, made mechanical spinning far more efficient than spinning by hand, and especially made cotton manufacturing one of the most important industries of the Industrial Revolution.
Yarn is a long continuous length of interlocked fibres, used in sewing, crocheting, knitting, weaving, embroidery, ropemaking, and the production of textiles. Thread is a type of yarn intended for sewing by hand or machine. Modern manufactured sewing threads may be finished with wax or other lubricants to withstand the stresses involved in sewing. Embroidery threads are yarns specifically designed for needlework. Yarn can be made of a number of natural or synthetic materials, and comes in a variety of colors and thicknesses. Although yarn may be dyed different colours, most yarns are solid coloured with a uniform hue.
A spinning wheel is a device for spinning thread or yarn from fibres. It was fundamental to the cotton textile industry prior to the Industrial Revolution. It laid the foundations for later machinery such as the spinning jenny and spinning frame, which displaced the spinning wheel during the Industrial Revolution.
In textile production, carding is a mechanical process that disentangles, cleans and intermixes fibres to produce a continuous web or sliver suitable for subsequent processing. This is achieved by passing the fibres between differentially moving surfaces covered with "card clothing", a firm flexible material embedded with metal pins. It breaks up locks and unorganised clumps of fibre and then aligns the individual fibres to be parallel with each other. In preparing wool fibre for spinning, carding is the step that comes after teasing.
A rope is a group of yarns, plies, fibres, or strands that are twisted or braided together into a larger and stronger form. Ropes have tensile strength and so can be used for dragging and lifting. Rope is thicker and stronger than similarly constructed cord, string, and twine.
The spinning frame is an Industrial Revolution invention for spinning thread or yarn from fibres such as wool or cotton in a mechanized way. It was developed in 18th-century Britain by Richard Arkwright and John Kay.
A spindle is a straight spike, usually made from wood, used for spinning, twisting fibers such as wool, flax, hemp, cotton into yarn. It is often weighted at either the bottom, middle, or top, commonly by a disc or spherical object called a whorl; many spindles, however, are weighted simply by thickening their shape towards the bottom, e.g. Orenburg and French spindles. The spindle may also have a hook, groove, or notch at the top to guide the yarn. Spindles come in many different sizes and weights depending on the thickness of the yarn one desires to spin.
Textile manufacturing or textile engineering is a major industry. It is largely based on the conversion of fibre into yarn, then yarn into fabric. These are then dyed or printed, fabricated into cloth which is then converted into useful goods such as clothing, household items, upholstery and various industrial products.
TPI is a term used in the textile industry. It measures how much twist a yarn has, and can be calculated by counting the number of twists in an inch of yarn.
The spinning mule is a machine used to spin cotton and other fibres. They were used extensively from the late 18th to the early 20th century in the mills of Lancashire and elsewhere. Mules were worked in pairs by a minder, with the help of two boys: the little piecer and the big or side piecer. The carriage carried up to 1,320 spindles and could be 150 feet (46 m) long, and would move forward and back a distance of 5 feet (1.5 m) four times a minute.
Nonwoven fabric or non-woven fabric is a fabric-like material made from staple fibre (short) and long fibres, bonded together by chemical, mechanical, heat or solvent treatment. The term is used in the textile manufacturing industry to denote fabrics, such as felt, which are neither woven nor knitted. Some non-woven materials lack sufficient strength unless densified or reinforced by a backing. In recent years, non-wovens have become an alternative to polyurethane foam.
Spinning is an ancient textile art in which plant, animal or synthetic fibres are drawn out and twisted together to form yarn. For thousands of years, fibre was spun by hand using simple tools, the spindle and distaff. After the introduction of the spinning wheel in the 13th century, the output of individual spinners increased dramatically. Mass production later arose in the 18th century with the beginnings of the Industrial Revolution. Hand-spinning remains a popular handicraft.
Open-end spinning is a technology for creating yarn without using a spindle. It was invented and developed in Czechoslovakia in Výzkumný ústav bavlnářský / Cotton Research Institute in Ústí nad Orlicí in 1963.
Combing is a method for preparing carded fibre for spinning. Combing aligns fibers in parallel before spinning to produce a smoother, stronger, and more lustrous yarn. The process of combing is accompanied by gilling, a process of evening out carded or combed top making it suitable for spinning. Combing separates out short fibres by means of a rotating ring or rectilinear row of steel pins. The fibres in the 'top' it produces have been straightened and lie parallel to each other. When combing wool, the discarded short fibres are called noils, and are ground up into shoddy.
Textile manufacturing is one of the oldest human activities. The oldest known textiles date back to about 5000 B.C. In order to make textiles, the first requirement is a source of fibre from which a yarn can be made, primarily by spinning. The yarn is processed by knitting or weaving to create cloth. The machine used for weaving is the loom. Cloth is finished by what are described as wet process to become fabric. The fabric may be dyed, printed or decorated by embroidering with coloured yarns.
Ring spinning is a spindle-based method of spinning fibres, such as cotton, flax or wool, to make a yarn. The ring frame developed from the throstle frame, which in its turn was a descendant of Arkwright's water frame. Ring spinning is a continuous process, unlike mule spinning which uses an intermittent action. In ring spinning, the roving is first attenuated by using drawing rollers, then spun and wound around a rotating spindle which in its turn is contained within an independently rotating ring flyer. Traditionally ring frames could only be used for the coarser counts, but they could be attended by semi-skilled labour.
Bradford Industrial Museum, established 1974 in Moorside Mills, Eccleshill, Bradford, United Kingdom, specializes in relics of local industry, especially printing and textile machinery, kept in working condition for regular demonstrations to the public. There is a Horse Emporium in the old canteen block plus a shop in the mill, and entry is free of charge.
Magnetic ring spinning, magnetic spinning, or innovative spinning is a ring spinning technology for making yarn based on magnetic levitation. This technique functions without a traveler sliding over the ring, enabling much higher spinning rates.
Doubling is a textile industry term synonymous with combining. It can be used for various processes during spinning. During the carding stage, several sources of roving are doubled together and drawn, to remove variations in thickness. After spinning, yarn is doubled for many reasons. Yarn may be doubled to produce warp for weaving, to make cotton for lace, crochet and knitting. It is used for embroidery threads and sewing threads, for example: sewing thread is usually 6-cable thread. Two threads of spun 60s cotton are twisted together, and three of these double threads are twisted into a cable, of what is now 5s yarn. This is mercerised, gassed and wound onto a bobbin.
A blend is a mixture of two or more fibers. In yarn spinning, different compositions, lengths, diameters, or colors may be combined to create a blend. Blended textiles are fabrics or yarns produced with a combination of two or more types of different fibers, or yarns to obtain desired traits and aesthetics. Blending is possible at various stages of textile manufacturing. The term, blend, refers to spun fibers or a fabric composed of such fibers. There are several synonymous terms: a combination yarn is made up of two strands of different fibers twisted together to form a ply; a mixture or mixed cloth refers to blended cloths in which different types of yarns are used in warp and weft sides.