Enoyl-CoA hydratase 2

Last updated
Enoyl-CoA hydratase 2
Identifiers
EC no. 4.2.1.119
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Enoyl-CoA hydratase 2 (2-enoyl-CoA hydratase 2, AtECH2, ECH2, MaoC, MFE-2, PhaJAc, D-3-hydroxyacyl-CoA hydro-lyase, D-specific 2-trans-enoyl-CoA hydratase) is an enzyme (EC 4.2.1.119) with systematic name (3R)-3-hydroxyacyl-CoA hydro-lyase. [1] [2] [3] [4] [5] [6] This enzyme catalyses the following chemical reaction on D-3-hydroxyacyl-CoA

Enoyl-CoA hydratase 2 reaction.svg

This enzyme catalyses a hydration step in peroxisomal beta oxidation.

Related Research Articles

<span class="mw-page-title-main">Enoyl CoA isomerase</span>

Enoyl-CoA-(∆) isomerase (EC 5.3.3.8, also known as dodecenoyl-CoA- isomerase, 3,2-trans-enoyl-CoA isomerase, ∆3 ,∆2 -enoyl-CoA isomerase, or acetylene-allene isomerase, is an enzyme that catalyzes the conversion of cis- or trans-double bonds of coenzyme A bound fatty acids at gamma-carbon to trans double bonds at beta-carbon as below:

<span class="mw-page-title-main">Beta oxidation</span> Process of fatty acid breakdown

In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA, which enters the citric acid cycle, and NADH and FADH2, which are co-enzymes used in the electron transport chain. It is named as such because the beta carbon of the fatty acid undergoes oxidation to a carbonyl group. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

<span class="mw-page-title-main">Enoyl-CoA hydratase</span>

Enoyl-CoA hydratase (ECH) or crotonase is an enzyme EC 4.2.1.17 that hydrates the double bond between the second and third carbons on 2-trans/cis-enoyl-CoA:

<span class="mw-page-title-main">HADHA</span> Protein-coding gene in the species Homo sapiens

Trifunctional enzyme subunit alpha, mitochondrial also known as hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, alpha subunit is a protein that in humans is encoded by the HADHA gene. Mutations in HADHA have been associated with trifunctional protein deficiency or long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency.

<span class="mw-page-title-main">2,4 Dienoyl-CoA reductase</span> Class of enzymes

2,4 Dienoyl-CoA reductase also known as DECR1 is an enzyme which in humans is encoded by the DECR1 gene which resides on chromosome 8. This enzyme catalyzes the following reactions

D-Bifunctional protein deficiency is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.

The crotonase family comprises mechanistically diverse proteins that share a conserved trimeric quaternary structure, the core of which consists of 4 turns of a (beta/beta/alpha)n superhelix.

<span class="mw-page-title-main">Methionine gamma-lyase</span>

The enzyme methionine γ-lyase (EC 4.4.1.11, MGL) is in the γ-family of PLP-dependent enzymes. It degrades sulfur-containing amino acids to α-keto acids, ammonia, and thiols:

The enzyme 3α,7α,12α-trihydroxy-5β-cholest-24-enoyl-CoA hydratase (EC 4.2.1.107) catalyzes the chemical reaction

The enzyme 3-hydroxyoctanoyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59) catalyzes the chemical reaction

In enzymology, a 3-hydroxypalmitoyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.61) is an enzyme that catalyzes the chemical reaction

In enzymology, a crotonoyl-[acyl-carrier-protein] hydratase (EC 4.2.1.58) is an enzyme that catalyzes the chemical reaction

The enzyme long-chain-enoyl-CoA hydratase (EC 4.2.1.74) catalyzes the chemical reaction

<span class="mw-page-title-main">HSD17B4</span> Protein-coding gene in the species Homo sapiens

D-bifunctional protein (DBP), also known as peroxisomal multifunctional enzyme type 2 (MFP-2), as well as 17β-hydroxysteroid dehydrogenase type IV is a protein that in humans is encoded by the HSD17B4 gene. It's an alcohol oxidoreductase, specifically 17β-Hydroxysteroid dehydrogenase. It is involved in fatty acid β-oxidation and steroid metabolism.

<span class="mw-page-title-main">ECH1</span> Protein-coding gene in the species Homo sapiens

Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial is an enzyme that in humans is encoded by the ECH1 gene.

Propionate kinase is an enzyme with systematic name ATP:propanoate phosphotransferase. This enzyme catalyses the following chemical reaction

Oxepin-CoA hydrolase (EC 3.7.1.16, paaZ (gene)) is an enzyme with systematic name 2-oxepin-2(3H)-ylideneacetyl-CoA hydrolyase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">6-carboxytetrahydropterin synthase</span> Enzyme

6-carboxytetrahydropterin synthase (EC 4.1.2.50, CPH4 synthase, queD (gene), ToyB, ykvK (gene)) is an enzyme with systematic name 7,8-dihydroneopterin 3'-triphosphate acetaldehyde-lyase (6-carboxy-5,6,7,8-tetrahydropterin and triphosphate-forming). This enzyme catalyses the following reversible chemical reaction.

3-hydroxydecanoyl-(acyl-carrier-protein) dehydratase (EC 4.2.1.60, D-3-hydroxydecanoyl-[acyl-carrier protein] dehydratase, 3-hydroxydecanoyl-acyl carrier protein dehydrase, 3-hydroxydecanoyl-acyl carrier protein dehydratase, β-hydroxydecanoyl thioester dehydrase, β-hydroxydecanoate dehydrase, beta-hydroxydecanoyl thiol ester dehydrase, FabA, β-hydroxyacyl-acyl carrier protein dehydratase, HDDase, β-hydroxyacyl-ACP dehydrase, (3R)-3-hydroxydecanoyl-[acyl-carrier-protein] hydro-lyase) is an enzyme with systematic name (3R)-3-hydroxydecanoyl-(acyl-carrier protein) hydro-lyase. This enzyme catalyses the following chemical reaction

The enzyme Rhamnogalacturonan endolyase is an enzyme with systematic name α-L-rhamnopyranosyl-(1→4)-α-D-galactopyranosyluronate endolyase. catalyses the following process:

References

  1. Koski KM, Haapalainen AM, Hiltunen JK, Glumoff T (February 2005). "Crystal structure of 2-enoyl-CoA hydratase 2 from human peroxisomal multifunctional enzyme type 2". Journal of Molecular Biology. 345 (5): 1157–69. doi:10.1016/j.jmb.2004.11.009. PMID   15644212.
  2. Fukui T, Shiomi N, Doi Y (February 1998). "Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae". Journal of Bacteriology. 180 (3): 667–73. PMC   106937 . PMID   9457873.
  3. Koski MK, Haapalainen AM, Hiltunen JK, Glumoff T (July 2003). "Crystallization and preliminary crystallographic data of 2-enoyl-CoA hydratase 2 domain of Candida tropicalis peroxisomal multifunctional enzyme type 2". Acta Crystallographica Section D. 59 (Pt 7): 1302–5. doi:10.1107/s090744490300982x. PMID   12832794.
  4. Hisano T, Fukui T, Iwata T, Doi Y (January 2001). "Crystallization and preliminary X-ray analysis of (R)-specific enoyl-CoA hydratase from Aeromonas caviae involved in polyhydroxyalkanoate biosynthesis" (PDF). Acta Crystallographica Section D. 57 (Pt 1): 145–7. doi:10.1107/s0907444900014062. PMID   11134939.
  5. Goepfert S, Hiltunen JK, Poirier Y (November 2006). "Identification and functional characterization of a monofunctional peroxisomal enoyl-CoA hydratase 2 that participates in the degradation of even cis-unsaturated fatty acids in Arabidopsis thaliana". The Journal of Biological Chemistry. 281 (47): 35894–903. doi: 10.1074/jbc.m606383200 . PMID   16982622.
  6. Engeland K, Kindl H (August 1991). "Evidence for a peroxisomal fatty acid beta-oxidation involving D-3-hydroxyacyl-CoAs. Characterization of two forms of hydro-lyase that convert D-(-)-3-hydroxyacyl-CoA into 2-trans-enoyl-CoA". European Journal of Biochemistry. 200 (1): 171–8. doi: 10.1111/j.1432-1033.1991.tb21064.x . PMID   1879422.