Eosin methylene blue

Last updated
E. coli on EMB agar Coli levine.JPG
E. coli on EMB agar

Eosin methylene blue (EMB, also known as "Levine's formulation") is a selective stain for Gram-negative bacteria. [1] EMB contains dyes that are toxic to Gram-positive bacteria. EMB is the selective and differential medium for coliforms. It is a blend of two stains, eosin and methylene blue in the ratio of 6:1. EMB is a differential microbiological medium, which slightly inhibits the growth of Gram-positive bacteria and provides a color indicator distinguishing between organisms that ferment lactose (e.g., E. coli) and those that do not (e.g., Salmonella, Shigella). [2] Organisms that ferment lactose display "nucleated colonies"—colonies with dark centers. [3]

This medium is important in medical laboratories by distinguishing pathogenic microbes in a short period of time. [4]

Metallic green sheen of E. coli on EMB agar E. coli on EMB agar.png
Metallic green sheen of E. coli on EMB agar

On EMB if E. coli is grown it will give a distinctive metallic green sheen (due to the metachromatic properties of the dyes, E. coli movement using flagella, and strong acid end-products of fermentation). Some species of Citrobacter and Enterobacter will also react this way to EMB. [5] This medium has been specifically designed to discourage the growth of Gram-positive bacteria. [6]

EMB contains the following ingredients: peptone, lactose, dipotassium phosphate, eosin Y (dye), methylene blue (dye), and agar.

There are also EMB agars that do not contain lactose.

Related Research Articles

<span class="mw-page-title-main">Agar plate</span> Petri dish with agar used to culture microbes

An agar plate is a Petri dish that contains a growth medium solidified with agar, used to culture microorganisms. Sometimes selective compounds are added to influence growth, such as antibiotics.

<span class="mw-page-title-main">Staining</span> Technique used to enhance visual contrast of specimens observed under a microscope

Staining is a technique used to enhance contrast in samples, generally at the microscopic level. Stains and dyes are frequently used in histology, in cytology, and in the medical fields of histopathology, hematology, and cytopathology that focus on the study and diagnoses of diseases at the microscopic level. Stains may be used to define biological tissues, cell populations, or organelles within individual cells.

<span class="mw-page-title-main">Bacteriological water analysis</span>

Bacteriological water analysis is a method of analysing water to estimate the numbers of bacteria present and, if needed, to find out what sort of bacteria they are. It represents one aspect of water quality. It is a microbiological analytical procedure which uses samples of water and from these samples determines the concentration of bacteria. It is then possible to draw inferences about the suitability of the water for use from these concentrations. This process is used, for example, to routinely confirm that water is safe for human consumption or that bathing and recreational waters are safe to use.

<span class="mw-page-title-main">Coliform bacteria</span> Group of bacterial species

Coliform bacteria are defined as either motile or non-motile Gram-negative non-spore forming Bacilli that possess β-galactosidase to produce acids and gases under their optimal growth temperature of 35-37°C. They can be aerobes or facultative aerobes, and are a commonly used indicator of low sanitary quality of foods, milk, and water. Coliforms can be found in the aquatic environment, in soil and on vegetation; they are universally present in large numbers in the feces of warm-blooded animals as they are known to inhabit the gastrointestinal system. While coliform bacteria are not normally causes of serious illness, they are easy to culture, and their presence is used to infer that other pathogenic organisms of fecal origin may be present in a sample, or that said sample is not safe to consume. Such pathogens include disease-causing bacteria, viruses, or protozoa and many multicellular parasites.

<span class="mw-page-title-main">Growth medium</span> Solid, liquid or gel used to grow microorganisms or cells

A growth medium or culture medium is a solid, liquid, or semi-solid designed to support the growth of a population of microorganisms or cells via the process of cell proliferation or small plants like the moss Physcomitrella patens. Different types of media are used for growing different types of cells.

A fecal coliform is a facultatively anaerobic, rod-shaped, gram-negative, non-sporulating bacterium. Coliform bacteria generally originate in the intestines of warm-blooded animals. Fecal coliforms are capable of growth in the presence of bile salts or similar surface agents, are oxidase negative, and produce acid and gas from lactose within 48 hours at 44 ± 0.5°C. The term "thermotolerant coliform" is more correct and is gaining acceptance over "fecal coliform".

<i>Saccharomyces</i> Genus of fungi

Saccharomyces is a genus of fungi that includes many species of yeasts. Saccharomyces is from Greek σάκχαρον (sugar) and μύκης (fungus) and means sugar fungus. Many members of this genus are considered very important in food production. It is known as the brewer's yeast or baker's yeast. They are unicellular and saprotrophic fungi. One example is Saccharomyces cerevisiae, which is used in making bread, wine, and beer, and for human and animal health. Other members of this genus include the wild yeast Saccharomyces paradoxus that is the closest relative to S. cerevisiae, Saccharomyces bayanus, used in making wine, and Saccharomyces cerevisiaevar. boulardii, used in medicine.

<span class="mw-page-title-main">MacConkey agar</span> Differential media

MacConkey agar is a selective and differential culture medium for bacteria. It is designed to selectively isolate Gram-negative and enteric bacteria and differentiate them based on lactose fermentation. Lactose fermenters turn red or pink on MacConkey agar, and nonfermenters do not change color. The media inhibits growth of Gram-positive organisms with crystal violet and bile salts, allowing for the selection and isolation of gram-negative bacteria. The media detects lactose fermentation by enteric bacteria with the pH indicator neutral red.

Sorbitol-MacConkey agar is a variant of traditional MacConkey agar used in the detection of E. coli O157:H7. Traditionally, MacConkey agar has been used to distinguish those bacteria that ferment lactose from those that do not. This is important because gut bacteria, such as Escherichia coli, can typically ferment lactose, while important gut pathogens, such as Salmonella enterica and most shigellas are unable to ferment lactose. Shigella sonnei can ferment lactose, but only after prolonged incubation, so it is referred to as a late-lactose fermenter.

<span class="mw-page-title-main">Cystine–lactose–electrolyte-deficient agar</span>

CLED agar is a valuable non-inhibitory growth medium used in the isolation and differentiation of urinary microbes. It contains cystine and lactose and is electrolyte-deficient; the latter trait prevents the swarming of Proteus species. Cystine promotes the formation of cystine-dependent dwarf colonies. Bromothymol blue is the indicator used in the agar, it changes to yellow in case of acid production during fermentation of lactose or changes to deep blue in case of alkalinization. Lactose-positive bacteria build yellow colonies. Bacteria which decarboxylate L-cystine cause an alkaline reaction and build deep blue colonies.

<span class="mw-page-title-main">XLD agar</span>

Xylose Lysine Deoxycholate agar is a selective growth medium used in the isolation of Salmonella and Shigella species from clinical samples and from food. The agar was developed by Welton Taylor in 1965. It has a pH of approximately 7.4, leaving it with a bright pink or red appearance due to the indicator phenol red. Sugar fermentation lowers the pH and the phenol red indicator registers this by changing to yellow. Most gut bacteria, including Salmonella, can ferment the sugar xylose to produce acid; Shigella colonies cannot do this and therefore remain red. After exhausting the xylose supply Salmonella colonies will decarboxylate lysine, increasing the pH once again to alkaline and mimicking the red Shigella colonies. Salmonellae metabolise thiosulfate to produce hydrogen sulfide, which leads to the formation of colonies with black centers and allows them to be differentiated from the similarly coloured Shigella colonies.

<span class="mw-page-title-main">Mannitol salt agar</span> Culture medium used in microbiology

Mannitol salt agar or MSA is a commonly used selective and differential growth medium in microbiology. It encourages the growth of a group of certain bacteria while inhibiting the growth of others. It contains a high concentration of salt (NaCl) which is inhibitory to most bacteria - making MSA selective against most Gram-negative and selective for some Gram-positive bacteria that tolerate high salt concentrations. It is also a differential medium for mannitol-fermenting staphylococci, containing the sugar alcohol mannitol and the indicator phenol red, a pH indicator for detecting acid produced by mannitol-fermenting staphylococci. Staphylococcus aureus produces yellow colonies with yellow zones, whereas other coagulase-negative staphylococci produce small pink or red colonies with no colour change to the medium. If an organism can ferment mannitol, an acidic byproduct is formed that causes the phenol red in the agar to turn yellow. It is used for the selective isolation of presumptive pathogenic (pp) Staphylococcus species.

Hoyle's agar is a selective medium that uses tellurite to differentially select Corynebacterium diphtheriae from other upper respiratory tract flora. The medium appears cream to yellow colored, and takes the form of a free-floating powder. It is a modification of Neill's medium.

<span class="mw-page-title-main">TSI slant</span> Differential medium used in microbiology

The Triple Sugar Iron (TSI) test is a microbiological test roughly named for its ability to test a microorganism's ability to ferment sugars and to produce hydrogen sulfide. It is often used to differentiate enteric bacteria including Salmonella and Shigella.

<span class="mw-page-title-main">IMViC</span>

The IMViC tests are a group of individual tests used in microbiology lab testing to identify an organism in the coliform group. A coliform is a gram negative, aerobic, or facultative anaerobic rod, which produces gas from lactose within 48 hours. The presence of some coliforms indicate fecal contamination.

<span class="mw-page-title-main">Hektoen enteric agar</span>

Hektoen enteric agar is a selective and differential agar primarily used to recover Salmonella and Shigella from patient specimens. HEA contains indicators of lactose fermentation and hydrogen sulfide production; as well as inhibitors to prevent the growth of Gram-positive bacteria. It is named after the Hektoen Institute in Chicago, where researchers developed the agar.

<span class="mw-page-title-main">Endo agar</span> Culture medium used in microbiology

Endo agar is a microbiological growth medium with a faint pink colour. Originally developed for the isolation of Salmonella typhi, it is now used mostly as a coliform medium. Most gram-negative organisms grow well in this medium, while growth of gram-positive organisms is inhibited. Coliform organisms ferment the lactose in this medium, producing a green metallic sheen, whereas non-lactose-fermenting organisms produce clear, colourless colonies, i.e. Salmonella species.

<span class="mw-page-title-main">Thiosulfate–citrate–bile salts–sucrose agar</span>

Thiosulfate–citrate–bile salts–sucrose agar, or TCBS agar, is a type of selective agar culture plate that is used in microbiology laboratories to isolate Vibrio species. TCBS agar is highly selective for the isolation of V. cholerae and V. parahaemolyticus as well as other Vibrio species. Apart from TCBS agar, other rapid testing dipsticks like immunochromatographic dipstick is also used in endemic areas such as Asia, Africa and Latin America. Though, TCBS agar study is required for confirmation. This becomes immensely important in cases of gastroenteritis caused by campylobacter species, whose symptoms mimic that of cholera. Since no yellow bacterial growth is observed in case of campylobacter species on TCBS agar, chances of incorrect diagnosis can be rectified. TCBS agar contains high concentrations of sodium thiosulfate and sodium citrate to inhibit the growth of Enterobacteriaceae. Inhibition of gram-positive bacteria is achieved by the incorporation of ox gall, which is a naturally occurring substance containing a mixture of bile salts and sodium cholate, a pure bile salt. Sodium thiosulfate also serves as a sulfur source and its presence, in combination with ferric citrate, allows for the easy detection of hydrogen sulfide production. Saccharose (sucrose) is included as a fermentable carbohydrate for metabolism by Vibrio species. The alkaline pH of the medium enhances the recovery of V. cholerae and inhibits the growth of others. Thymol blue and bromothymol blue are included as indicators of pH changes.

<span class="mw-page-title-main">New York City agar</span>

The NYC medium or GC medium agar is used for isolating Gonococci.

In microbiology, the term isolation refers to the separation of a strain from a natural, mixed population of living microbes, as present in the environment, for example in water or soil, or from living beings with skin flora, oral flora or gut flora, in order to identify the microbe(s) of interest. Historically, the laboratory techniques of isolation first developed in the field of bacteriology and parasitology, before those in virology during the 20th century.

References

  1. Levine, M (1918). "Differentiation of B. coli and B. aerogenes on a simplified eosin-methylene blue agar". J Infect Dis. 23: 43–47. doi:10.1086/infdis/23.1.43.
  2. ""Biochemical Tests Explanation"". Archived from the original on 2009-02-15. Retrieved 2008-12-24.
  3. "Differential Media (Levine's Formulation)". Archived from the original on 2008-12-11. Retrieved 2008-12-24.
  4. Bachoon, Dave S., and Wendy A. Dustman. Microbiology Laboratory Manual. Ed. Michael Stranz. Mason, OH: Cengage Learning, 2008. Exercise 8, "Selective and Differential Media for Isolation" Print.
  5. "EMB Agar Growth Examples". Archived from the original on 2009-01-22. Retrieved 2008-12-24.
  6. "Eosin-Methylene Blue Agar Plates Protocol". September 29, 2007. Archived from the original on November 30, 2011.