The NYC (New York City) medium or GC ( Neisseria gonorrhoeae ) medium agar is a type of selective media used for isolating Gonococci and N. meningitidis . [1]
The agar base is composed of: [1]
Ingredients | Grams per litre |
---|---|
Proteose peptone | 15 |
Corn starch | 1 |
Glucose | 5 |
Sodium chloride | 5 |
Dipotassium hydrogen phosphate | 4 |
Potassium dihydrogen phosphate | 1 |
Agar | 20 |
Final pH ( at 25°C) 7.4±0.2
NYC Agar Base was originally developed by Fauer, Weisburd and Wilson [1] [2] [3] at the New York City Department of Health for selective isolation of pathogenic Neisseria species from clinical specimens. It consists of primarily a peptone-corn starch agar-base buffered with phosphates and supplemented with horse plasma, horse haemoglobin, dextrose, yeast autolysate and antibiotics. [1] [2] This medium is superior to other media generally employed for the isolation of Neisseria species. [1] [4] [5] The transparent nature of the medium helps in studying the colonial types. [6]
Proteose peptone, horse plasma, haemoglobin provide nutrients for the growth of N. gonorrhoeae and N. meningitidis . Phosphate buffers the medium. The selective supplement added contains the antibiotics vancomycin, colistin, nystatin and trimethoprim, to suppress the accompanying flora. Vancomycin is inhibitory for gram-positive bacteria. Colistin inhibits gram negative bacteria, including Pseudomonas species, while Proteus is inhibited by trimethoprim. [7] The combination of trimethoprim and colistin acts synergistically against gram-negative bacilli. [8] Starch neutralizes the toxic metabolites produced by Neisseria . The yeast autolysate supplement fulfils the CO2 requirements needed to enhance Neisseria growth. Yeast contains oxaloacetic acid which is metabolized by gonococci to produce sufficient CO2 for growth of capnophilic gonococci. [9] Also, presence of yeast autolysate reduces the lag phase of growth of Neisseria , thus enhancing both size and number of colonies. The specimen can be directly streaked on the medium to obtain maximum isolation.
Streak the specimen as soon as possible after it is received in the laboratory. If material is being cultured directly from a swab, proceed as follows: [10]
Typical colonial morphology is as follows: [7]
N. gonorrhoeae may appear as small (0.5–1.0 mm) grayish white to colorless mucoid colonies. N. meningitidis appears as large colorless to bluish-gray mucoid colonies.
Colonies may be selected for Gram-staining, subculturing or other diagnostic procedures.
Neisseria gonorrhoeae, also known as gonococcus (singular) or gonococci (plural), is a species of Gram-negative diplococci bacteria first isolated by Albert Neisser in 1879. An obligate human pathogen, it primarily colonizes the mucosal lining of the urogenital tract; however, it is also capable of adhering to the mucosa of the nose, pharynx, rectum, and conjunctiva. It causes the sexually transmitted genitourinary infection gonorrhea as well as other forms of gonococcal disease including disseminated gonococcemia, septic arthritis, and gonococcal ophthalmia neonatorum.
Neisseria is a large genus of bacteria that colonize the mucosal surfaces of many animals. Of the 11 species that colonize humans, only two are pathogens, N. meningitidis and N. gonorrhoeae.
An agar plate is a Petri dish that contains a growth medium solidified with agar, used to culture microorganisms. Sometimes selective compounds are added to influence growth, such as antibiotics.
A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture medium under controlled laboratory conditions. Microbial cultures are foundational and basic diagnostic methods used as research tools in molecular biology.
Bacteriological water analysis is a method of analysing water to estimate the numbers of bacteria present and, if needed, to find out what sort of bacteria they are. It represents one aspect of water quality. It is a microbiological analytical procedure which uses samples of water and from these samples determines the concentration of bacteria. It is then possible to draw inferences about the suitability of the water for use from these concentrations. This process is used, for example, to routinely confirm that water is safe for human consumption or that bathing and recreational waters are safe to use.
Eosin methylene blue is a selective and differential media used for the identification of Gram-negative bacteria, specifically the Enterobacteriaceae. EMB inhibits the growth of most Gram-positive bacteria. EMB is often used to confirm the presence of coliforms in a sample. It contains two dyes, eosin and methylene blue in the ratio of 6:1. EMB is a differential microbiological media, which inhibits the growth of Gram-positive bacteria and differentiates bacteria that ferment lactose from those that do not. Organisms that ferment lactose appear dark/black or green often with "nucleated colonies"—colonies with dark centers. Organisms that do not ferment lactose will appear pink and often mucoid.
A growth medium or culture medium is a solid, liquid, or semi-solid designed to support the growth of a population of microorganisms or cells via the process of cell proliferation or small plants like the moss Physcomitrella patens. Different types of media are used for growing different types of cells.
MacConkey agar is a selective and differential culture medium for bacteria. It is designed to selectively isolate gram-negative and enteric bacteria and differentiate them based on lactose fermentation. Lactose fermenters turn red or pink on MacConkey agar, and nonfermenters do not change color. The media inhibits growth of gram-positive organisms with crystal violet and bile salts, allowing for the selection and isolation of gram-negative bacteria. The media detects lactose fermentation by enteric bacteria with the pH indicator neutral red.
Chocolate agar (CHOC) or chocolate blood agar (CBA) is a nonselective, enriched growth medium used for isolation of pathogenic bacteria. It is a variant of the blood agar plate, containing red blood cells that have been lysed by slowly heating to 80°C. Chocolate agar is used for growing fastidious respiratory bacteria, such as Haemophilus influenzae and Neisseria meningitidis. In addition, some of these bacteria, most notably H. influenzae, need growth factors such as nicotinamide adenine dinucleotide and hemin, which are inside red blood cells; thus, a prerequisite to growth for these bacteria is the presence of red blood cell lysates. The heat also inactivates enzymes which could otherwise degrade NAD. The agar is named for its color and contains no chocolate products.
In microbiology, streaking is a technique used to isolate a pure strain from a single species of microorganism, often bacteria. Samples can then be taken from the resulting colonies and a microbiological culture can be grown on a new plate so that the organism can be identified, studied, or tested.
Bile Esculin Agar (BEA) is a selective differential agar used to isolate and identify members of the genus Enterococcus, formerly part of the "group D streptococci".
Thayer–Martin agar is a Mueller–Hinton agar with 5% chocolate sheep blood and antibiotics. It is used for culturing and primarily isolating pathogenic Neisseria bacteria, including Neisseria gonorrhoeae and Neisseria meningitidis, as the medium inhibits the growth of most other microorganisms. When growing Neisseria meningitidis, one usually starts with a normally sterile body fluid, so a plain chocolate agar is used. Thayer–Martin agar was initially developed in 1964, with an improved formulation published in 1966.
Hektoen enteric agar is a selective and differential agar primarily used to recover Salmonella and Shigella from patient specimens. HEA contains indicators of lactose fermentation and hydrogen sulfide production; as well as inhibitors to prevent the growth of Gram-positive bacteria. It is named after the Hektoen Institute in Chicago, where researchers developed the agar.
Thiosulfate–citrate–bile salts–sucrose agar, or TCBS agar, is a type of selective agar culture plate that is used in microbiology laboratories to isolate Vibrio species. TCBS agar is highly selective for the isolation of V. cholerae and V. parahaemolyticus as well as other Vibrio species. Apart from TCBS agar, other rapid testing dipsticks like immunochromatographic dipstick is also used in endemic areas such as Asia, Africa and Latin America. Though, TCBS agar study is required for confirmation. This becomes immensely important in cases of gastroenteritis caused by Campylobacter species, whose symptoms mimic those of cholera. Since no yellow bacterial growth is observed in case of Campylobacter species on TCBS agar, chances of incorrect diagnosis can be rectified. TCBS agar contains high concentrations of sodium thiosulfate and sodium citrate to inhibit the growth of Enterobacteriaceae. Inhibition of gram-positive bacteria is achieved by the incorporation of ox gall, which is a naturally occurring substance containing a mixture of bile salts and sodium cholate, a pure bile salt. Sodium thiosulfate also serves as a sulfur source and its presence, in combination with ferric citrate, allows for the easy detection of hydrogen sulfide production. Saccharose (sucrose) is included as a fermentable carbohydrate for metabolism by Vibrio species. The alkaline pH of the medium enhances the recovery of V. cholerae and inhibits the growth of others. Thymol blue and bromothymol blue are included as indicators of pH changes.
Neisseria cinerea is a commensal species grouped with the Gram-negative, oxidase-positive, and catalase-positive diplococci. It was first classified as Micrococcus cinereus by Alexander von Lingelsheim in 1906. Using DNA hybridization, N. cinerea exhibits 50% similarity to Neisseria gonorrhoeae.
Neisseria flavescens was first isolated from cerebrospinal fluid in the midst of an epidemic meningitis outbreak in Chicago. These gram-negative, aerobic bacteria reside in the mucosal membranes of the upper respiratory tract, functioning as commensals. However, this species can also play a pathogenic role in immunocompromised and diabetic individuals. In rare cases, it has been linked to meningitis, pneumonia, empyema, endocarditis, and sepsis.
Granada medium is a selective and differential culture medium designed to selectively isolate Streptococcus agalactiae and differentiate it from other microorganisms. Granada Medium was developed by Manuel Rosa-Fraile et al. at the Service of Microbiology in the Hospital Virgen de las Nieves in Granada (Spain).
In microbiology, the term isolation refers to the separation of a strain from a natural, mixed population of living microbes, as present in the environment, for example in water or soil, or from living beings with skin flora, oral flora or gut flora, in order to identify the microbe(s) of interest. Historically, the laboratory techniques of isolation first developed in the field of bacteriology and parasitology, before those in virology during the 20th century.
Columbia Nalidixic Acid (CNA) agar is a growth medium used for the isolation and cultivation of bacteria from clinical and non-clinical specimens. CNA agar contains antibiotics that inhibit Gram-negative organisms, aiding in the selective isolation of Gram-positive bacteria. Gram-positive organisms that grow on the media can be differentiated on the basis of hemolysis.
'Streptomycin thallous acetate actidione agar, often abbreviated STAA, is a selective culture medium designed to favor the growth of Brochothrix thermosphacta for lab study. This medium was developed in 1966, by George Alan Gardner.