Epitope mapping

Last updated
High-resolution epitope maps of antibodies against Ebola glycoprotein (GP), determined using shotgun mutagenesis epitope mapping. Epitope maps provide data for determining mechanism of action (MOA). Epitope-mapping-MOA.jpg
High-resolution epitope maps of antibodies against Ebola glycoprotein (GP), determined using shotgun mutagenesis epitope mapping. Epitope maps provide data for determining mechanism of action (MOA).

In immunology, epitope mapping is the process of experimentally identifying the binding site, or epitope , of an antibody on its target antigen (usually, on a protein). [1] [2] [3] Identification and characterization of antibody binding sites aid in the discovery and development of new therapeutics, vaccines, and diagnostics. [4] [5] [6] [7] [8] Epitope characterization can also help elucidate the binding mechanism of an antibody [9] and can strengthen intellectual property (patent) protection. [10] [11] [12] Experimental epitope mapping data can be incorporated into robust algorithms to facilitate in silico prediction of B-cell epitopes based on sequence and/or structural data. [13]

Contents

Epitopes are generally divided into two classes: linear and conformational/discontinuous. Linear epitopes are formed by a continuous sequence of amino acids in a protein. Conformational epitopes epitopes are formed by amino acids that are nearby in the folded 3D structure but distant in the protein sequence. Note that conformational epitopes can include some linear segments. B-cell epitope mapping studies suggest that most interactions between antigens and antibodies, particularly autoantibodies and protective antibodies (e.g., in vaccines), rely on binding to discontinuous epitopes.[ citation needed ]

Importance for antibody characterization

By providing information on mechanism of action, epitope mapping is a critical component in therapeutic monoclonal antibody (mAb) development. Epitope mapping can reveal how a mAb exerts its functional effects - for instance, by blocking the binding of a ligand or by trapping a protein in a non-functional state. Many therapeutic mAbs target conformational epitopes that are only present when the protein is in its native (properly folded) state, which can make epitope mapping challenging. [14] Epitope mapping has been crucial to the development of vaccines against prevalent or deadly viral pathogens, such as chikungunya, [15] dengue, [16] Ebola, [5] [17] [18] and Zika viruses, [19] by determining the antigenic elements (epitopes) that confer long-lasting immunization effects. [20]

Complex target antigens, such as membrane proteins (e.g., G protein-coupled receptors [GPCRs]) [21] and multi-subunit proteins (e.g., ion channels) are key targets of drug discovery. Mapping epitopes on these targets can be challenging because of the difficulty in expressing and purifying these complex proteins. Membrane proteins frequently have short antigenic regions (epitopes) that fold correctly only when in the context of a lipid bilayer. As a result, mAb epitopes on these membrane proteins are often conformational and, therefore, are more difficult to map. [14] [21]

Importance for intellectual property (IP) protection

Shotgun mutagenesis epitope mapping of antibodies against HER2 revealed a novel epitope (orange spheres). Epitope maps provide supporting data for intellectual property (patent) claims. Epitope-mapping illustration-6-copy.png
Shotgun mutagenesis epitope mapping of antibodies against HER2 revealed a novel epitope (orange spheres). Epitope maps provide supporting data for intellectual property (patent) claims.

Epitope mapping has become prevalent in protecting the intellectual property (IP) of therapeutic mAbs. Knowledge of the specific binding sites of antibodies strengthens patents and regulatory submissions by distinguishing between current and prior art (existing) antibodies. [10] [11] [22] The ability to differentiate between antibodies is particularly important when patenting antibodies against well-validated therapeutic targets (e.g., PD1 and CD20) that can be drugged by multiple competing antibodies. [23] In addition to verifying antibody patentability, epitope mapping data have been used to support broad antibody claims submitted to the United States Patent and Trademark Office. [11] [12]

Epitope data have been central to several high-profile legal cases involving disputes over the specific protein regions targeted by therapeutic antibodies. [22] In this regard, the Amgen v. Sanofi/Regeneron Pharmaceuticals PCSK9 inhibitor case hinged on the ability to show that both the Amgen and Sanofi/Regeneron therapeutic antibodies bound to overlapping amino acids on the surface of PCSK9. [24]

Methods

There are several methods available for mapping antibody epitopes on target antigens:

Other methods, such as yeast display, phage display, [37] and limited proteolysis, provide high-throughput monitoring of antibody binding but lack resolution, especially for conformational epitopes. [38]

See also

References

  1. DeLisser, HM (1999). "Epitope mapping". Adhesion Protein Protocols. Methods Mol Biol. Vol. 96. pp. 11–20. doi:10.1385/1-59259-258-9:11. ISBN   978-1-59259-258-6. PMID   10098119.
  2. 1 2 3 Davidson, E; Doranz, B (2014). "A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes". Immunology. 143 (1): 13–20. doi:10.1111/imm.12323. PMC   4137951 . PMID   24854488.
  3. Westwood, Olwyn M. R.; Hay, Frank C., eds. (2001). Epitope Mapping: A Practical Approach. Oxford, Oxfordshire: Oxford University Press. ISBN   978-0-19-963652-5.[ page needed ]
  4. Gershoni, JM; Roitburd-Berman, A; Siman-Tov, DD; Tarnovitski Freund, N; Weiss, Y (2007). "Epitope mapping: the first step in developing epitope-based vaccines". BioDrugs. 21 (3): 145–56. doi:10.2165/00063030-200721030-00002. PMC   7100438 . PMID   17516710. S2CID   29506607.
  5. 1 2 Saphire, EO (2018). "Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection". Cell. 174 (4). et al.: P938–52. doi:10.1016/j.cell.2018.07.033. PMC   6102396 . PMID   30096313.
  6. Dutton, G (January 1, 2016). "Integral Molecular sizes up Ebola: Membrane protein specialist maps Ebola's binding sites to advance vaccine discovery". Genetic Engineering & Biotechnology News. 36 (1).
  7. Ahmad, TA; Eweida, A; Sheweita, SA (2016). "B-cell epitope mapping for the design of vaccines and effective diagnostics". Trials in Vaccinology. 5: 71–83. doi: 10.1016/j.trivac.2016.04.003 .
  8. Ahmad, TA; Eweida, A; El-Sayed, LH (2016). "T-cell epitope mapping for the design of powerful vaccines". Vaccine Reports. 6: 13–22. doi:10.1016/j.vacrep.2016.07.002.
  9. Davidson, E; et al. (2015). "Mechanism of binding to Ebola virus glycoprotein by the ZMapp, ZMAb, and MB-003 cocktail antibodies". Journal of Virology. 89 (21): 10982–92. doi:10.1128/JVI.01490-15. PMC   4621129 . PMID   26311869.
  10. 1 2 3 Banik, S; Deng, X; Doranz, B (2017). "Using epitope mapping to derive more value from mAbs". Genetic Engineering & Biotechnology News. 37 (15).
  11. 1 2 3 Deng, X; Storz, U; Doranz, BJ (2018). "Enhancing antibody patent protection using epitope mapping information". mAbs. 10 (2): 204–9. doi:10.1080/19420862.2017.1402998. PMC   5825199 . PMID   29120697.
  12. 1 2 Ledford, H (2018). "Rush to protect lucrative antibody patents kicks into gear". Nature. 557 (7707): 623–624. Bibcode:2018Natur.557..623L. doi: 10.1038/d41586-018-05273-z . PMID   29844545.
  13. Potocnakova, L; Bhide, M; Pulzova, LB (2017). "An introduction to B-cell epitope mapping and in silico epitope prediction". Journal of Immunology Research. 2016: 1–11. doi: 10.1155/2016/6760830 . PMC   5227168 . PMID   28127568.
  14. 1 2 Banik, SSR; Doranz, BJ (2010). "Mapping complex antibody epitopes". Genetic Engineering & Biotechnology News. 3 (2): 25–8.
  15. Zhang, R; et al. (2018). "Mxra8 is a receptor for multiple arthritogenic alphaviruses". Nature. 557 (7706): 570–4. Bibcode:2018Natur.557..570Z. doi:10.1038/s41586-018-0121-3. PMC   5970976 . PMID   29769725.
  16. Nivarthi, UK; et al. (2017). "Mapping the human memory B cell and serum neutralizing antibody responses to dengue virus serotype 4 infection and vaccination". Journal of Virology. 91 (5): e02041–16. doi:10.1128/JVI.02041-16. PMC   5309932 . PMID   28031369.
  17. Flyak AI; et al. (2018). "Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region". Nature Microbiology. 3 (6): 670–677. doi:10.1038/s41564-018-0157-z. PMC   6030461 . PMID   29736037.
  18. Zhao, X; et al. (2017). "Immunization-elicited broadly protective antibody reveals ebolavirus fusion loop as a site of vulnerability". Cell. 169 (5): 891–904. doi:10.1016/j.cell.2017.04.038. PMC   5803079 . PMID   28525756.
  19. Sapparapu, G; et al. (2016). "Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice". Nature. 540 (7633): 443–7. Bibcode:2016Natur.540..443S. doi:10.1038/nature20564. PMC   5583716 . PMID   27819683.
  20. 1 2 Gaseitsiwe, S.; et al. (2010). "Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401". Clinical and Vaccine Immunology. 17 (1): 168–75. doi:10.1128/CVI.00208-09. PMC   2812096 . PMID   19864486.
  21. 1 2 Paes, C; et al. (2009). "Atomic-level mapping of antibody epitopes on a GPCR". Journal of the American Chemical Society. 131 (20): 6952–6954. doi:10.1021/ja900186n. PMC   2943208 . PMID   19453194.
  22. 1 2 Sandercock, CG; Storz, U (2012). "Antibody specification beyond the target: claiming a later-generation therapeutic antibody by its target epitope". Nature Biotechnology. 30 (7): 615–618. doi:10.1038/nbt.2291. PMID   22781681. S2CID   52810327.
  23. Teeling, TJ; et al. (2006). "The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20". Journal of Immunology. 177 (1): 362–71. doi: 10.4049/jimmunol.177.1.362 . ISSN   0022-1767. PMID   16785532.
  24. "Amgen Inc. et al v. Sanofi et al" . Retrieved 2017-07-23.
  25. Long, F; et al. (2015). "Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity". PNAS. 112 (45): 13898–13903. Bibcode:2015PNAS..11213898L. doi: 10.1073/pnas.1515558112 . PMC   4653152 . PMID   26504196.
  26. 1 2 Bogan, AA; Thorn, KS (1998). "Anatomy of hot spots in protein interfaces". Journal of Molecular Biology. 280 (1): 1–9. doi:10.1006/jmbi.1998.1843. PMID   9653027. S2CID   11014160.
  27. Linnebacher, M; et al. (2012). "Clonality characterization of natural epitope-specific antibodies against the tumor-related antigen topoisomerase IIa by peptide chip and proteome analysis: a pilot study with colorectal carcinoma patient samples". Analytical and Bioanalytical Chemistry. 403 (1): 227–38. doi:10.1007/s00216-012-5781-5. PMID   22349330. S2CID   33847079.
  28. Cragg, MS (2011). "CD20 antibodies: doing the time warp". Blood. 118 (2): 219–20. doi: 10.1182/blood-2011-04-346700 . PMID   21757627.
  29. Timmerman, P; et al. (2009). "Functional reconstruction of structurally complex epitopes using CLIPS™ technology" (PDF). The Open Vaccine Journal. 2 (1): 56–67. doi: 10.2174/1875035400902010056 (inactive 2024-11-02). hdl:11245/1.309707.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  30. 1 2 "Epitope Mapping Services". Integral Molecular. Retrieved September 21, 2018.
  31. Lo Conte, L; Chothia, C; Janin, J (1999). "The atomic structure of protein-protein recognition sites". Journal of Molecular Biology. 285 (5): 2177–2198. doi:10.1006/jmbi.1998.2439. PMID   9925793. S2CID   20154946.
  32. Casina, VC; et al. (2014). "Autoantibody epitope mapping by hydrogen-deuterium exchange mass spectrometry at nearly single amino acid residue resolution reveals novel exosites on ADAMTS13 critical for substrate recognition and mechanism of autoimmune thrombotic thrombocytopenic purpura". Blood. 124 (21): 108. doi: 10.1182/blood.V124.21.108.108 .
  33. Malito, E.; Faleri, A.; Surdo, PL; Veggi, D.; Maruggi, G.; Grassi, E.; Cartocci, E.; Bertoldi, I.; Genovese, A.; Santini, L.; Romagnoli, G. (2013). "Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen". Proceedings of the National Academy of Sciences. 110 (9): 3304–3309. Bibcode:2013PNAS..110.3304M. doi: 10.1073/pnas.1222845110 . ISSN   0027-8424. PMC   3587270 . PMID   23396847.
  34. Pan, J. (2019). "Antibody epitope mapping at single residue resolution for unpurified antigens". The Journal of Immunology. 202 (1 Supplement): 131.36. doi:10.4049/jimmunol.202.Supp.131.36. ISSN   0022-1767. S2CID   255732819.
  35. Puchades, C.; Kűkrer, B.; Diefenbach, O.; Sneekes-Vriese, E.; Juraszek, J.; Koudstaal, W.; Apetri, A. (2019). "Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS". Scientific Reports. 9 (1): 4735. Bibcode:2019NatSR...9.4735P. doi: 10.1038/s41598-019-41179-0 . ISSN   2045-2322. PMC   6427009 . PMID   30894620.
  36. "Epitope Mapping". covalx.com/services/epitope-mapping-overview. Retrieved 2017-02-23.
  37. Mendonça, M; et al. (2016). "Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species". PLOS ONE. 11 (8): e0160544. Bibcode:2016PLoSO..1160544M. doi: 10.1371/journal.pone.0160544 . PMC   4973958 . PMID   27489951.
  38. Flanagan, N (May 15, 2011). "Mapping epitopes with H/D-ex mass spec: ExSAR expands repertoire of technology platform beyond protein characterization". Genetic Engineering & Biotechnology News. 31 (10). doi:10.1089/gen.31.10.02.