Epitope mapping

Last updated
High-resolution epitope maps of antibodies against Ebola glycoprotein (GP), determined using shotgun mutagenesis epitope mapping. Epitope maps provide data for determining mechanism of action (MOA). Epitope-mapping-MOA.jpg
High-resolution epitope maps of antibodies against Ebola glycoprotein (GP), determined using shotgun mutagenesis epitope mapping. Epitope maps provide data for determining mechanism of action (MOA).

In immunology, epitope mapping is the process of experimentally identifying the binding site, or epitope , of an antibody on its target antigen (usually, on a protein). [1] [2] [3] Identification and characterization of antibody binding sites aid in the discovery and development of new therapeutics, vaccines, and diagnostics. [4] [5] [6] [7] [8] Epitope characterization can also help elucidate the binding mechanism of an antibody [9] and can strengthen intellectual property (patent) protection. [10] [11] [12] Experimental epitope mapping data can be incorporated into robust algorithms to facilitate in silico prediction of B-cell epitopes based on sequence and/or structural data. [13]

Contents

Epitopes are generally divided into two classes: linear and conformational/discontinuous. Linear epitopes are formed by a continuous sequence of amino acids in a protein. Conformational epitopes epitopes are formed by amino acids that are nearby in the folded 3D structure but distant in the protein sequence. Note that conformational epitopes can include some linear segments. B-cell epitope mapping studies suggest that most interactions between antigens and antibodies, particularly autoantibodies and protective antibodies (e.g., in vaccines), rely on binding to discontinuous epitopes.[ citation needed ]

Importance for antibody characterization

By providing information on mechanism of action, epitope mapping is a critical component in therapeutic monoclonal antibody (mAb) development. Epitope mapping can reveal how a mAb exerts its functional effects - for instance, by blocking the binding of a ligand or by trapping a protein in a non-functional state. Many therapeutic mAbs target conformational epitopes that are only present when the protein is in its native (properly folded) state, which can make epitope mapping challenging. [14] Epitope mapping has been crucial to the development of vaccines against prevalent or deadly viral pathogens, such as chikungunya, [15] dengue, [16] Ebola, [5] [17] [18] and Zika viruses, [19] by determining the antigenic elements (epitopes) that confer long-lasting immunization effects. [20]

Complex target antigens, such as membrane proteins (e.g., G protein-coupled receptors [GPCRs]) [21] and multi-subunit proteins (e.g., ion channels) are key targets of drug discovery. Mapping epitopes on these targets can be challenging because of the difficulty in expressing and purifying these complex proteins. Membrane proteins frequently have short antigenic regions (epitopes) that fold correctly only when in the context of a lipid bilayer. As a result, mAb epitopes on these membrane proteins are often conformational and, therefore, are more difficult to map. [14] [21]

Importance for intellectual property (IP) protection

Shotgun mutagenesis epitope mapping of antibodies against HER2 revealed a novel epitope (orange spheres). Epitope maps provide supporting data for intellectual property (patent) claims. Epitope-mapping illustration-6-copy.png
Shotgun mutagenesis epitope mapping of antibodies against HER2 revealed a novel epitope (orange spheres). Epitope maps provide supporting data for intellectual property (patent) claims.

Epitope mapping has become prevalent in protecting the intellectual property (IP) of therapeutic mAbs. Knowledge of the specific binding sites of antibodies strengthens patents and regulatory submissions by distinguishing between current and prior art (existing) antibodies. [10] [11] [22] The ability to differentiate between antibodies is particularly important when patenting antibodies against well-validated therapeutic targets (e.g., PD1 and CD20) that can be drugged by multiple competing antibodies. [23] In addition to verifying antibody patentability, epitope mapping data have been used to support broad antibody claims submitted to the United States Patent and Trademark Office. [11] [12]

Epitope data have been central to several high-profile legal cases involving disputes over the specific protein regions targeted by therapeutic antibodies. [22] In this regard, the Amgen v. Sanofi/Regeneron Pharmaceuticals PCSK9 inhibitor case hinged on the ability to show that both the Amgen and Sanofi/Regeneron therapeutic antibodies bound to overlapping amino acids on the surface of PCSK9. [24]

Methods

There are several methods available for mapping antibody epitopes on target antigens:

Other methods, such as yeast display, phage display, [37] and limited proteolysis, provide high-throughput monitoring of antibody binding but lack resolution, especially for conformational epitopes. [38]

See also

Related Research Articles

<span class="mw-page-title-main">Antigen</span> Molecule triggering an immune response (antibody production) in the host

In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response.

<span class="mw-page-title-main">Antibody</span> Protein(s) forming a major part of an organisms immune system

An antibody (Ab) is the secreted form of a B cell receptor; the term immunoglobulin (Ig) can refer to either the membrane-bound form or the secreted form of the B cell receptor, but they are, broadly speaking, the same protein, and so the terms are often treated as synonymous. Antibodies are large, Y-shaped proteins belonging to the immunoglobulin superfamily which are used by the immune system to identify and neutralize foreign objects such as bacteria and viruses, including those that cause disease. Antibodies can recognize virtually any size antigen with diverse chemical compositions from molecules. Each antibody recognizes one or more specific antigens. This term literally means "antibody generator", as it is the presence of an antigen that drives the formation of an antigen-specific antibody. Each tip of the "Y" of an antibody contains a paratope that specifically binds to one particular epitope on an antigen, allowing the two molecules to bind together with precision. Using this mechanism, antibodies can effectively "tag" a microbe or an infected cell for attack by other parts of the immune system, or can neutralize it directly.

<span class="mw-page-title-main">DNA vaccine</span> Vaccine containing DNA

A DNA vaccine is a type of vaccine that transfects a specific antigen-coding DNA sequence into the cells of an organism as a mechanism to induce an immune response.

An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that binds to the epitope is called a paratope. Although epitopes are usually non-self proteins, sequences derived from the host that can be recognized are also epitopes.

Virus-like particles (VLPs) are molecules that closely resemble viruses, but are non-infectious because they contain no viral genetic material. They can be naturally occurring or synthesized through the individual expression of viral structural proteins, which can then self assemble into the virus-like structure. Combinations of structural capsid proteins from different viruses can be used to create recombinant VLPs. Both in-vivo assembly and in-vitro assembly have been successfully shown to form virus-like particles. VLPs derived from the Hepatitis B virus (HBV) and composed of the small HBV derived surface antigen (HBsAg) were described in 1968 from patient sera. VLPs have been produced from components of a wide variety of virus families including Parvoviridae, Retroviridae, Flaviviridae, Paramyxoviridae and bacteriophages. VLPs can be produced in multiple cell culture systems including bacteria, mammalian cell lines, insect cell lines, yeast and plant cells.

<span class="mw-page-title-main">Single-domain antibody</span> Antibody fragment

A single-domain antibody (sdAb), also known as a Nanobody, is an antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, it is able to bind selectively to a specific antigen. With a molecular weight of only 12–15 kDa, single-domain antibodies are much smaller than common antibodies which are composed of two heavy protein chains and two light chains, and even smaller than Fab fragments and single-chain variable fragments.

In academia, computational immunology is a field of science that encompasses high-throughput genomic and bioinformatics approaches to immunology. The field's main aim is to convert immunological data into computational problems, solve these problems using mathematical and computational approaches and then convert these results into immunologically meaningful interpretations.

<span class="mw-page-title-main">Linear epitope</span> Segment of a molecule which antibodies recognize by its linear structure

In immunology, a linear epitope is an epitope—a binding site on an antigen—that is recognized by antibodies by its linear sequence of amino acids. In contrast, most antibodies recognize a conformational epitope that has a specific three-dimensional shape.

Bacterial display is a protein engineering technique used for in vitro protein evolution. Libraries of polypeptides displayed on the surface of bacteria can be screened using flow cytometry or iterative selection procedures (biopanning). This protein engineering technique allows us to link the function of a protein with the gene that encodes it. Bacterial display can be used to find target proteins with desired properties and can be used to make affinity ligands which are cell-specific. This system can be used in many applications including the creation of novel vaccines, the identification of enzyme substrates and finding the affinity of a ligand for its target protein.

Immunogenicity is the ability of a foreign substance, such as an antigen, to provoke an immune response in the body of a human or other animal. It may be wanted or unwanted:

<span class="mw-page-title-main">Gp41</span> Subunit of the envelope protein complex of retroviruses

Gp41 also known as glycoprotein 41 is a subunit of the envelope protein complex of retroviruses, including human immunodeficiency virus (HIV). Gp41 is a transmembrane protein that contains several sites within its ectodomain that are required for infection of host cells. As a result of its importance in host cell infection, it has also received much attention as a potential target for HIV vaccines.

Molecular mimicry is the theoretical possibility that sequence similarities between foreign and self-peptides are enough to result in the cross-activation of autoreactive T or B cells by pathogen-derived peptides. Despite the prevalence of several peptide sequences which can be both foreign and self in nature, just a few crucial residues can activate a single antibody or TCR. This highlights the importance of structural homology in the theory of molecular mimicry. Upon activation, these "peptide mimic" specific T or B cells can cross-react with self-epitopes, thus leading to tissue pathology (autoimmunity). Molecular mimicry is one of several ways in which autoimmunity can be evoked. A molecular mimicking event is more than an epiphenomenon despite its low probability, and these events have serious implications in the onset of many human autoimmune disorders.

Antigenic variation or antigenic alteration refers to the mechanism by which an infectious agent such as a protozoan, bacterium or virus alters the proteins or carbohydrates on its surface and thus avoids a host immune response, making it one of the mechanisms of antigenic escape. It is related to phase variation. Antigenic variation not only enables the pathogen to avoid the immune response in its current host, but also allows re-infection of previously infected hosts. Immunity to re-infection is based on recognition of the antigens carried by the pathogen, which are "remembered" by the acquired immune response. If the pathogen's dominant antigen can be altered, the pathogen can then evade the host's acquired immune system. Antigenic variation can occur by altering a variety of surface molecules including proteins and carbohydrates. Antigenic variation can result from gene conversion, site-specific DNA inversions, hypermutation, or recombination of sequence cassettes. The result is that even a clonal population of pathogens expresses a heterogeneous phenotype. Many of the proteins known to show antigenic or phase variation are related to virulence.

<span class="mw-page-title-main">Conformational epitope</span> Segment of a molecule which contacts an immune receptor when folded

In immunology, a conformational epitope is a sequence of sub-units composing an antigen that come in direct contact with a receptor of the immune system.

2F5 is a broadly neutralizing human monoclonal antibody (mAb) that has been shown to bind to and neutralize HIV-1 in vitro, making it a potential candidate for use in vaccine synthesis. 2F5 recognizes an epitope in the membrane-proximal external region (MPER) of HIV-1 gp41. 2F5 then binds to this epitope and its constant region interacts with the viral lipid membrane, which neutralizes the virus.

A neutralizing antibody (NAb) is an antibody that defends a cell from a pathogen or infectious particle by neutralizing any effect it has biologically. Neutralization renders the particle no longer infectious or pathogenic. Neutralizing antibodies are part of the humoral response of the adaptive immune system against viruses, intracellular bacteria and microbial toxin. By binding specifically to surface structures (antigen) on an infectious particle, neutralizing antibodies prevent the particle from interacting with its host cells it might infect and destroy.

Computational Resources for Drug Discovery (CRDD) is an important module of the in silico module of Open Source for Drug Discovery (OSDD). The CRDD web portal provides computer resources related to drug discovery on a single platform. It caters to researchers researching computer-aided drug design, provides computational resources, hosts a discussion forum, and has resources related to drug discovery, predicting inhibitors, and predicting the ADME-Tox properties of molecules. One of the major objectives of CRDD is to promote open source software in the field of cheminformatics and pharmacoinformatics.

Peptide-based synthetic vaccines are subunit vaccines made from peptides. The peptides mimic the epitopes of the antigen that triggers direct or potent immune responses. Peptide vaccines can not only induce protection against infectious pathogens and non-infectious diseases but also be utilized as therapeutic cancer vaccines, where peptides from tumor-associated antigens are used to induce an effective anti-tumor T-cell response.

<span class="mw-page-title-main">Peptide microarray</span>

A peptide microarray is a collection of peptides displayed on a solid surface, usually a glass or plastic chip. Peptide chips are used by scientists in biology, medicine and pharmacology to study binding properties and functionality and kinetics of protein-protein interactions in general. In basic research, peptide microarrays are often used to profile an enzyme, to map an antibody epitope or to find key residues for protein binding. Practical applications are seromarker discovery, profiling of changing humoral immune responses of individual patients during disease progression, monitoring of therapeutic interventions, patient stratification and development of diagnostic tools and vaccines.

Bacteriophage AP205 is a plaque-forming bacteriophage that infects Acinetobacter bacteria. Bacteriophage AP205 is a protein-coated virus with a positive single-stranded RNA genome. It is a member of the family Fiersviridae, consisting of particles that infect Gram-negative bacteria such as E. coli.

References

  1. DeLisser, HM (1999). "Epitope mapping". Adhesion Protein Protocols. Methods Mol Biol. Vol. 96. pp. 11–20. doi:10.1385/1-59259-258-9:11. ISBN   978-1-59259-258-6. PMID   10098119.
  2. 1 2 3 Davidson, E; Doranz, B (2014). "A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes". Immunology. 143 (1): 13–20. doi:10.1111/imm.12323. PMC   4137951 . PMID   24854488.
  3. Westwood, Olwyn M. R.; Hay, Frank C., eds. (2001). Epitope Mapping: A Practical Approach. Oxford, Oxfordshire: Oxford University Press. ISBN   978-0-19-963652-5.[ page needed ]
  4. Gershoni, JM; Roitburd-Berman, A; Siman-Tov, DD; Tarnovitski Freund, N; Weiss, Y (2007). "Epitope mapping: the first step in developing epitope-based vaccines". BioDrugs. 21 (3): 145–56. doi:10.2165/00063030-200721030-00002. PMC   7100438 . PMID   17516710. S2CID   29506607.
  5. 1 2 Saphire, EO (2018). "Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection". Cell. 174 (4). et al.: P938–52. doi:10.1016/j.cell.2018.07.033. PMC   6102396 . PMID   30096313.
  6. Dutton, G (January 1, 2016). "Integral Molecular sizes up Ebola: Membrane protein specialist maps Ebola's binding sites to advance vaccine discovery". Genetic Engineering & Biotechnology News. 36 (1).
  7. Ahmad, TA; Eweida, A; Sheweita, SA (2016). "B-cell epitope mapping for the design of vaccines and effective diagnostics". Trials in Vaccinology. 5: 71–83. doi: 10.1016/j.trivac.2016.04.003 .
  8. Ahmad, TA; Eweida, A; El-Sayed, LH (2016). "T-cell epitope mapping for the design of powerful vaccines". Vaccine Reports. 6: 13–22. doi:10.1016/j.vacrep.2016.07.002.
  9. Davidson, E; et al. (2015). "Mechanism of binding to Ebola virus glycoprotein by the ZMapp, ZMAb, and MB-003 cocktail antibodies". Journal of Virology. 89 (21): 10982–92. doi:10.1128/JVI.01490-15. PMC   4621129 . PMID   26311869.
  10. 1 2 3 Banik, S; Deng, X; Doranz, B (2017). "Using epitope mapping to derive more value from mAbs". Genetic Engineering & Biotechnology News. 37 (15).
  11. 1 2 3 Deng, X; Storz, U; Doranz, BJ (2018). "Enhancing antibody patent protection using epitope mapping information". mAbs. 10 (2): 204–9. doi:10.1080/19420862.2017.1402998. PMC   5825199 . PMID   29120697.
  12. 1 2 Ledford, H (2018). "Rush to protect lucrative antibody patents kicks into gear". Nature. 557 (7707): 623–624. Bibcode:2018Natur.557..623L. doi: 10.1038/d41586-018-05273-z . PMID   29844545.
  13. Potocnakova, L; Bhide, M; Pulzova, LB (2017). "An introduction to B-cell epitope mapping and in silico epitope prediction". Journal of Immunology Research. 2016: 1–11. doi: 10.1155/2016/6760830 . PMC   5227168 . PMID   28127568.
  14. 1 2 Banik, SSR; Doranz, BJ (2010). "Mapping complex antibody epitopes". Genetic Engineering & Biotechnology News. 3 (2): 25–8.
  15. Zhang, R; et al. (2018). "Mxra8 is a receptor for multiple arthritogenic alphaviruses". Nature. 557 (7706): 570–4. Bibcode:2018Natur.557..570Z. doi:10.1038/s41586-018-0121-3. PMC   5970976 . PMID   29769725.
  16. Nivarthi, UK; et al. (2017). "Mapping the human memory B cell and serum neutralizing antibody responses to dengue virus serotype 4 infection and vaccination". Journal of Virology. 91 (5): e02041–16. doi:10.1128/JVI.02041-16. PMC   5309932 . PMID   28031369.
  17. Flyak AI; et al. (2018). "Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2–MPER region". Nature Microbiology. 3 (6): 670–677. doi:10.1038/s41564-018-0157-z. PMC   6030461 . PMID   29736037.
  18. Zhao, X; et al. (2017). "Immunization-elicited broadly protective antibody reveals ebolavirus fusion loop as a site of vulnerability". Cell. 169 (5): 891–904. doi:10.1016/j.cell.2017.04.038. PMC   5803079 . PMID   28525756.
  19. Sapparapu, G; et al. (2016). "Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice". Nature. 540 (7633): 443–7. Bibcode:2016Natur.540..443S. doi:10.1038/nature20564. PMC   5583716 . PMID   27819683.
  20. 1 2 Gaseitsiwe, S.; et al. (2010). "Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401". Clinical and Vaccine Immunology. 17 (1): 168–75. doi:10.1128/CVI.00208-09. PMC   2812096 . PMID   19864486.
  21. 1 2 Paes, C; et al. (2009). "Atomic-level mapping of antibody epitopes on a GPCR". Journal of the American Chemical Society. 131 (20): 6952–6954. doi:10.1021/ja900186n. PMC   2943208 . PMID   19453194.
  22. 1 2 Sandercock, CG; Storz, U (2012). "Antibody specification beyond the target: claiming a later-generation therapeutic antibody by its target epitope". Nature Biotechnology. 30 (7): 615–618. doi:10.1038/nbt.2291. PMID   22781681. S2CID   52810327.
  23. Teeling, TJ; et al. (2006). "The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20". Journal of Immunology. 177 (1): 362–71. doi: 10.4049/jimmunol.177.1.362 . ISSN   0022-1767. PMID   16785532.
  24. "Amgen Inc. et al v. Sanofi et al" . Retrieved 2017-07-23.
  25. Long, F; et al. (2015). "Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity". PNAS. 112 (45): 13898–13903. Bibcode:2015PNAS..11213898L. doi: 10.1073/pnas.1515558112 . PMC   4653152 . PMID   26504196.
  26. 1 2 Bogan, AA; Thorn, KS (1998). "Anatomy of hot spots in protein interfaces". Journal of Molecular Biology. 280 (1): 1–9. doi:10.1006/jmbi.1998.1843. PMID   9653027. S2CID   11014160.
  27. Linnebacher, M; et al. (2012). "Clonality characterization of natural epitope-specific antibodies against the tumor-related antigen topoisomerase IIa by peptide chip and proteome analysis: a pilot study with colorectal carcinoma patient samples". Analytical and Bioanalytical Chemistry. 403 (1): 227–38. doi:10.1007/s00216-012-5781-5. PMID   22349330. S2CID   33847079.
  28. Cragg, MS (2011). "CD20 antibodies: doing the time warp". Blood. 118 (2): 219–20. doi: 10.1182/blood-2011-04-346700 . PMID   21757627.
  29. Timmerman, P; et al. (2009). "Functional reconstruction of structurally complex epitopes using CLIPS™ technology" (PDF). The Open Vaccine Journal. 2 (1): 56–67. doi: 10.2174/1875035400902010056 (inactive 2024-04-03). hdl:11245/1.309707.{{cite journal}}: CS1 maint: DOI inactive as of April 2024 (link)
  30. 1 2 "Epitope Mapping Services". Integral Molecular. Retrieved September 21, 2018.
  31. Lo Conte, L; Chothia, C; Janin, J (1999). "The atomic structure of protein-protein recognition sites". Journal of Molecular Biology. 285 (5): 2177–2198. doi:10.1006/jmbi.1998.2439. PMID   9925793. S2CID   20154946.
  32. Casina, VC; et al. (2014). "Autoantibody epitope mapping by hydrogen-deuterium exchange mass spectrometry at nearly single amino acid residue resolution reveals novel exosites on ADAMTS13 critical for substrate recognition and mechanism of autoimmune thrombotic thrombocytopenic purpura". Blood. 124 (21): 108. doi: 10.1182/blood.V124.21.108.108 .
  33. Malito, E.; Faleri, A.; Surdo, PL; Veggi, D.; Maruggi, G.; Grassi, E.; Cartocci, E.; Bertoldi, I.; Genovese, A.; Santini, L.; Romagnoli, G. (2013). "Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen". Proceedings of the National Academy of Sciences. 110 (9): 3304–3309. Bibcode:2013PNAS..110.3304M. doi: 10.1073/pnas.1222845110 . ISSN   0027-8424. PMC   3587270 . PMID   23396847.
  34. Pan, J. (2019). "Antibody epitope mapping at single residue resolution for unpurified antigens". The Journal of Immunology. 202 (1 Supplement): 131.36. doi:10.4049/jimmunol.202.Supp.131.36. ISSN   0022-1767. S2CID   255732819.
  35. Puchades, C.; Kűkrer, B.; Diefenbach, O.; Sneekes-Vriese, E.; Juraszek, J.; Koudstaal, W.; Apetri, A. (2019). "Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS". Scientific Reports. 9 (1): 4735. Bibcode:2019NatSR...9.4735P. doi: 10.1038/s41598-019-41179-0 . ISSN   2045-2322. PMC   6427009 . PMID   30894620.
  36. "Epitope Mapping". covalx.com/services/epitope-mapping-overview. Retrieved 2017-02-23.
  37. Mendonça, M; et al. (2016). "Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species". PLOS ONE. 11 (8): e0160544. Bibcode:2016PLoSO..1160544M. doi: 10.1371/journal.pone.0160544 . PMC   4973958 . PMID   27489951.
  38. Flanagan, N (May 15, 2011). "Mapping epitopes with H/D-ex mass spec: ExSAR expands repertoire of technology platform beyond protein characterization". Genetic Engineering & Biotechnology News. 31 (10). doi:10.1089/gen.31.10.02.