Ethylbenzene hydroxylase

Last updated
Ethylbenzene hydroxylase (Ethylbenzene dehydrogenase)
Identifiers
EC no. 1.17.99.2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an ethylbenzene hydroxylase (EC 1.17.99.2) is an enzyme that catalyzes the chemical reaction

Contents

ethylbenzene + H2O + acceptor (S)-1-phenylethanol + reduced acceptor

The 3 substrates of this enzyme are ethylbenzene, H2O, and acceptor, whereas its two products are (S)-1-phenylethanol and reduced acceptor.

This enzyme belongs to the family of oxidoreductases, specifically those acting on CH or CH2 groups with other acceptors. The systematic name of this enzyme class is ethylbenzene:acceptor oxidoreductase. Other names in common use include ethylbenzene dehydrogenase, and ethylbenzene:(acceptor) oxidoreductase. This enzyme participates in ethylbenzene degradation by Aromatoleum aromaticum, a denitrifying bacterium related to the genera Azoarcus and Thauera. It is a molybdenum enzyme belonging to the DMSO reductase family. Molybdenum enzymes are distinguished by the presence of a unique active site containing molybdenum atom, one or two molybdopterins and additional ligands (i.e. aminoacid residue of Ser, Cys, SeCys or Asp and very often oxygen Mo=O ligand). EBDH is synthesized exclusively in cells grown anaerobically on ethylbenzene and has been identified as a soluble periplasmic protein.

Structural studies

As of late 2007, only one structure has been solved for this class of enzymes, with the PDB accession code 2IVF. EBDH consists of three subunits of 96, 43, and 23 kDa, and contains a molybdenum cofactor and a heme b559 cofactor linked by a linear row of five iron-sulfur clusters. [1]

Structure of ethylbenzene dehydrogenase 2ivf.png
Structure of ethylbenzene dehydrogenase

Mechanism

The reaction is catalyzed by the enzyme using a molybdenum cofactor (MoCo), which in the native state consists of a molybdenum (VI) nucleus ligated by two molybdopterin guanine dinucleotide (MGD) ligands and an aspartic acid residue. Two electrons acquired by the cofactor during the reaction, i.e., the hydroxylation of the hydrocarbon, are then transferred via a chain of iron-sulfur clusters connecting the molybdenum with a heme b cofactor in the alpha subunit, from which the electrons are donated to a yet-unknown acceptor. Notably, EBDH exhibits in vitro activity only with artificial electron acceptors of high redox potential, like the ferricenium ion (E0’= +380 mV). This suggests that its natural electron acceptor may be a periplasmic cytochrome c of similarly high potential, which would couple the ethylbenzene oxidation to the nitrate respiration of A. aromaticum.

The EBDH catalytic cycle has two parts: i) oxidation part, where substrate is oxidized to alcohols and the enzyme is reduced to its catalytically inactive form, and ii) enzyme re-oxidation part, where EBDH active site (MoCo) is oxidized and restored to its catalytically active form.

Recent theoretical and experimental studies point toward radical C-H activation as the initial reaction and rate limiting step. A possible alternative hydride transfer seems to be less likely. The mechanism concludes with conversion of the hydrocarbon to a carbocation intermediate and rebound of a hydroxide to form the hydroxylated product. Moreover, a histidine residue (His192) of the active site seems to be involved in the reaction mechanism.

Related Research Articles

<span class="mw-page-title-main">Oxidative phosphorylation</span> Metabolic pathway

Oxidative phosphorylation or electron transport-linked phosphorylation or terminal oxidation is the metabolic pathway in which cells use enzymes to oxidize nutrients, thereby releasing chemical energy in order to produce adenosine triphosphate (ATP). In eukaryotes, this takes place inside mitochondria. Almost all aerobic organisms carry out oxidative phosphorylation. This pathway is so pervasive because it releases more energy than alternative fermentation processes such as anaerobic glycolysis.

<span class="mw-page-title-main">Xanthine oxidase</span> Class of enzymes

Xanthine oxidase is a form of xanthine oxidoreductase, a type of enzyme that generates reactive oxygen species. These enzymes catalyze the oxidation of hypoxanthine to xanthine and can further catalyze the oxidation of xanthine to uric acid. These enzymes play an important role in the catabolism of purines in some species, including humans.

<span class="mw-page-title-main">Cofactor (biochemistry)</span> Non-protein chemical compound or metallic ion

A cofactor is a non-protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst. Cofactors can be considered "helper molecules" that assist in biochemical transformations. The rates at which these happen are characterized in an area of study called enzyme kinetics. Cofactors typically differ from ligands in that they often derive their function by remaining bound.

In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule, the reductant, also called the electron donor, to another, the oxidant, also called the electron acceptor. This group of enzymes usually utilizes NADP+ or NAD+ as cofactors. Transmembrane oxidoreductases create electron transport chains in bacteria, chloroplasts and mitochondria, including respiratory complexes I, II and III. Some others can associate with biological membranes as peripheral membrane proteins or be anchored to the membranes through a single transmembrane helix.

A hydrogenase is an enzyme that catalyses the reversible oxidation of molecular hydrogen (H2), as shown below:

DMSO reductase is a molybdenum-containing enzyme that catalyzes reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). This enzyme serves as the terminal reductase under anaerobic conditions in some bacteria, with DMSO being the terminal electron acceptor. During the course of the reaction, the oxygen atom in DMSO is transferred to molybdenum, and then reduced to water.

<span class="mw-page-title-main">Molybdopterin</span> Chemical compound

Molybdopterins are a class of cofactors found in most molybdenum-containing and all tungsten-containing enzymes. Synonyms for molybdopterin are: MPT and pyranopterin-dithiolate. The nomenclature for this biomolecule can be confusing: Molybdopterin itself contains no molybdenum; rather, this is the name of the ligand that will bind the active metal. After molybdopterin is eventually complexed with molybdenum, the complete ligand is usually called molybdenum cofactor.

<span class="mw-page-title-main">Sulfite oxidase</span>

Sulfite oxidase is an enzyme in the mitochondria of all eukaryotes, with exception of the yeasts. It oxidizes sulfite to sulfate and, via cytochrome c, transfers the electrons produced to the electron transport chain, allowing generation of ATP in oxidative phosphorylation. This is the last step in the metabolism of sulfur-containing compounds and the sulfate is excreted.

<span class="mw-page-title-main">Formate dehydrogenase</span>

Formate dehydrogenases are a set of enzymes that catalyse the oxidation of formate to carbon dioxide, donating the electrons to a second substrate, such as NAD+ in formate:NAD+ oxidoreductase (EC 1.17.1.9) or to a cytochrome in formate:ferricytochrome-b1 oxidoreductase (EC 1.2.2.1). This family of enzymes has attracted attention as inspiration or guidance on methods for the carbon dioxide fixation, relevant to global warming.

Trimethylamine N-oxide reductase is a microbial enzyme that can reduce trimethylamine N-oxide (TMAO) into trimethylamine (TMA), as part of the electron transport chain. The enzyme has been purified from E. coli and the photosynthetic bacteria Roseobacter denitrificans.

In enzymology, sarcosine dehydrogenase (EC 1.5.8.3) is a mitochondrial enzyme that catalyzes the chemical reaction N-demethylation of sarcosine to give glycine. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH group of donor with other acceptors. The systematic name of this enzyme class is sarcosine:acceptor oxidoreductase (demethylating). Other names in common use include sarcosine N-demethylase, monomethylglycine dehydrogenase, and sarcosine:(acceptor) oxidoreductase (demethylating). Sarcosine dehydrogenase is closely related to dimethylglycine dehydrogenase, which catalyzes the demethylation reaction of dimethylglycine to sarcosine. Both sarcosine dehydrogenase and dimethylglycine dehydrogenase use FAD as a cofactor. Sarcosine dehydrogenase is linked by electron-transferring flavoprotein (ETF) to the respiratory redox chain. The general chemical reaction catalyzed by sarcosine dehydrogenase is:

In enzymology, a cellobiose dehydrogenase (acceptor) (EC 1.1.99.18) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Thiosulfate dehydrogenase</span>

Thiosulfate dehydrogenase is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">Dioxygenase</span> Class of enzymes

Dioxygenases are oxidoreductase enzymes. Aerobic life, from simple single-celled bacteria species to complex eukaryotic organisms, has evolved to depend on the oxidizing power of dioxygen in various metabolic pathways. From energetic adenosine triphosphate (ATP) generation to xenobiotic degradation, the use of dioxygen as a biological oxidant is widespread and varied in the exact mechanism of its use. Enzymes employ many different schemes to use dioxygen, and this largely depends on the substrate and reaction at hand.

Molybdopterin synthase (EC 2.8.1.12, MPT synthase) is an enzyme required to synthesize molybdopterin (MPT) from precursor Z (now known as cyclic pyranopterin monophosphate). Molydopterin is subsequently complexed with molybdenum to form molybdenum cofactor (MoCo). MPT synthase catalyses the following chemical reaction:

A transition metal oxo complex is a coordination complex containing an oxo ligand. Formally O2-, an oxo ligand can be bound to one or more metal centers, i.e. it can exist as a terminal or (most commonly) as bridging ligands (Fig. 1). Oxo ligands stabilize high oxidation states of a metal. They are also found in several metalloproteins, for example in molybdenum cofactors and in many iron-containing enzymes. One of the earliest synthetic compounds to incorporate an oxo ligand is potassium ferrate (K2FeO4), which was likely prepared by Georg E. Stahl in 1702.

(S)-1-phenylethanol dehydrogenase (EC 1.1.1.311, PED) is an enzyme with systematic name (S)-1-phenylethanol:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

Dimethyl sulfide:cytochrome c2 reductase (EC 1.8.2.4) is an enzyme with systematic name dimethyl sulfide:cytochrome-c2 oxidoreductase. It is also known by the name dimethylsulfide dehydrogenase (Ddh). This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Aldehyde ferredoxin oxidoreductase</span>

In enzymology, an aldehyde ferredoxin oxidoreductase (EC 1.2.7.5) is an enzyme that catalyzes the chemical reaction

In enzymology, a formylmethanofuran dehydrogenase (EC 1.2.99.5) is an enzyme that catalyzes the chemical reaction:

References

  1. Kloer, Daniel P.; Hagel, Corina; Heider, Johann; Schulz, Georg E. (2006). "Crystal Structure of Ethylbenzene Dehydrogenase from Aromatoleum aromaticum". Structure. 14 (9): 1377–1388. doi: 10.1016/j.str.2006.07.001 . PMID   16962969.