Forest tent caterpillar moth

Last updated

Forest tent caterpillar moth
Forest Tent Moth.JPG
Adult
Forest Tent Caterpillar 25.jpg
Larva
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Lasiocampidae
Genus: Malacosoma
Species:
M. disstria
Binomial name
Malacosoma disstria
Hübner, 1820
Synonyms
  • Malacosoma disstria
  • Chelonia nubilisGuérin-Méneville, [1832]
  • Clisiocampa silvaticaHarris, 1841
  • Bombyx drupacearumBoisduval, 1868
  • Clisiocampa erosaStretch, 1881
  • Clisiocampa disstria var. thoracicoidesNeumoegen & Dyar, 1893
  • Clisiocampa erosa var. sylvaticoidesNeumoegen & Dyar, 1893
  • Clisiocampa erosa var. perversaNeumoegen & Dyar, 1893
Adult and egg mass Malacosoma disstria.jpg
Adult and egg mass

The forest tent caterpillar moth (Malacosoma disstria) is a moth found throughout North America, especially in the eastern regions. Unlike related tent caterpillar species, the larvae of forest tent caterpillars do not make tents, but rather, weave a silky sheet where they lie together during molting. They also lay down strands of silk as they move over branches and travel as groups along these pheromone-containing silk trails. The caterpillars are social, traveling together to feed and massing as a group at rest. Group behavior diminishes as the caterpillars increase in size, so that by the fifth instar (molt) the caterpillars are feeding and resting independently. [1]

Contents

The adult moths of this species favor oak, sweetgum, tupelo, aspen, and sugar maple for egg laying in the summer. The females lay eggs in masses of up to 300, which are stuck to twigs and covered with a gluey cement called spumaline, which prevents them from desiccating and freezing. Eggs hatch the following spring. The larvae can be found feeding on many other species of deciduous trees or shrubs. High population density outbreaks tend to recur at reasonably regular intervals every decade or so and usually last two to three years, during which time trees and shrubs can be almost completely denuded of leaves. Most plants replace the lost leaves without permanent damage. [1]

Description

Mature (pre-pupating) larvae are 2 to 2.5 inches (50 to 64 mm) in length. [2] The caterpillars are black, dark brown, or gray, with broad blue longitudinal stripes and thin yellow stripes extending along each side. The back of each abdominal segment bears a white spot that is wider toward the head end. The sides are partially covered with fur-like long setae. [2] The adult moth that emerges after pupation is yellow or tan with a thick, short, furry body. The wingspan is about 1.5 inches (30 mm). Coloration is similar for males and females. The female's body is larger than the male's. [2]

The insect is native to North America. [3]

Biology

The forest tent caterpillar moth is nocturnal, taking flight soon after nightfall and returning to rest before dawn. [4] It is not known how far an egg-laden female can fly, but there is one credible report of this species flying hundreds of kilometers with the assistance of an unusually strong wind. [4]

Larval stages

The social caterpillars of M. disstria are nomadic and forage as a group. The fifty to two hundred larvae that result from a single egg-mass live together for most of their larval stages. [5] Trails of silk heavily loaded with pheromones secreted by other colony members induce larvae to move, while the close presence of other colony members brings them to quiescence. This indicates that there are social cues that are used to increase the locomotive efficiency of each individual larva. [6] Pupation occurs after caterpillars reach a size threshold that is attained more quickly when caterpillars forage in groups. This is particularly important since delayed development to threshold increases the risks of predation and food depletion. [7] However, as larvae proceed into the later instars, they become increasingly independent and by the fifth instar rarely form aggregations. [8] This ontogenetic change in gregariousness results from an increase in the costs of maintaining grouping due to changes related to predation, thermoregulation, silk production, and foraging. [9]

Thermoregulation

Forest tent caterpillars are ectotherms so they rely on sources of heat from the environment to raise their body temperatures. In order to do this, they bask together and benefit from group thermoregulation. Elevating body temperature is essential in increasing metabolic rates for movement and food processing, so proper thermoregulation leads to an increased rate of development. [8] This is very important for M. distria caterpillars, which rely on fast growth in spite of low environmental temperatures to benefit from the high food quality and the smaller predation risk in the spring. Thus, it is an adaptive advantage to bask in groups. However, as caterpillars grow, thermoregulatory needs decrease and the benefit of group living is gradually overridden by other factors such as food competition. [9]

Behavior

Foraging

Forest tent caterpillars massing on a tree trunk ForestTentCaterpillar-A2.jpg
Forest tent caterpillars massing on a tree trunk

Eating times are variable. Foraging trips can occur at any time and are very coordinated: either the entire colony forages or no one does. A small proportion of starved individuals is enough to reach agreement and start group movement. [10] However, this organized behavior and the high fidelity of caterpillars to pheromone hormone trails imply conservative foraging, which may trap caterpillars to poor food sources even if a better one is close by. Some plasticity in this behavior has been reported, which is modulated by the presence of caterpillars that are behaviorally more exploratory or that simply become more adventurous because they are starved, increasing foraging flexibility. [11] With age, competition for food becomes more important, especially as resources become scarce. Grouping decreases growth rate via a decrease in food intake so ontogenetic changes toward more mobility and independence can be viewed as simple "scaling" relationships between caterpillars and food sources evolved to increase the benefits of individual foraging in later stages. [9]

Silk production

Large silk trails help increase adhesion to the host plant. As caterpillars advance in groups, they form thick mats of silk that provide them with secure adhesion. Isolated caterpillars have been observed to fall off their host trees and perish. It has been hypothesized that this is due to the production of thin strands that do not provide a secure grip or due to a faster exhaustion of silk supply. [10] In addition to this, making silk is more costly for larvae in their first instars, so grouping is beneficial in earlier stages. As caterpillars develop, they decrease the use of shared silk. [9]

Mating

The first adults to eclose (emerge from their pupa) in early spring are the males. Starting at around 5:30 p.m., hundreds of males fly vigorously and relentlessly in search for cocoons containing females about to eclose. They approach trees and move around them, zigzagging and crawling on branches. If they do not find females with whom they will have the chance to copulate, they fly off and continue their search. It has been suggested that male activity is dependent on temperature, since below 59 ˚F (15 ˚C) only a small number of males are found to be actively looking for females. It has also been reported that females emit a calling pheromone before they emerge from the pupae, causing an increase in male activity around the cocoon before they eclose. In addition, males have been seen approaching and moving around brown objects, suggesting that males also use visual cues to find females. Within one or two seconds after the tip of the female abdomen clears the cocoon, males begin copulation, which lasts an average of 202 minutes. [12] In order to position himself, the male moves backwards and bends his abdomen towards the female, pushing the tip towards the female's bursa copulatrix. [13] There is a significant positive correlation between the body sizes of copulating pairs, which indicates that mating is not random with respect to size, presumably because of male-male competition for larger females. [12] Independently of whether they are or not copulating, females do not move more than a few centimeters from their eclosion site until they are able to fly away, usually at twilight. Females start preparing for flight by fanning their wings. Frequently, fanning begins during mating and is often the first sign of its end as females fly away soon after. [13]

Influence of population density on mating behavior

Forest tent caterpillar populations increase periodically to outbreak densities. [12] Not much is known about the factors that lead to the initiation of forest tent caterpillar outbreaks, although some plausible mechanisms are higher temperatures in the spring, phenological synchrony with their host plants, and reduced predation enemies. [14] Whatever the cause, outbreak densities give rise to cyclic population dynamics, characterized by highest fecundity at peak population density and reduced fecundity for several generations during decline. [15] At low population densities, moths are found mating high above the ground, in the forest canopy. [12] Mating starts late in the day and copulations are short. [13] In contrast, during high-density outbreaks, mating takes place on lower vegetation, presumably because caterpillars descend to forage in less defoliated areas, where they form their pupae. [12] This high population density increases the operational sex ratio and significantly intensifies male-male competition. As a result, copulations begin earlier in the day and last longer in an attempt to minimize sperm competition. In addition, such high densities enhance female opportunities for being selective regarding males. [13]

During high outbreak densities, some males, called "hangers", change their copulation behavior. They do not attach physically to the branch while mating, which allows them to mate longer and counteract their mate's efforts to reject them. This behavior increases the percentage of eggs they fertilize as they delay their mated female from remating and reduce number of potential mates the female can have. This hanging behavior does not appear at low population densities, presumably because it is more energetically costly and more conspicuous, since it can attract more males that can potentially interfere in the copulation process. As a result, males only exhibit this behavior when they are trying to prolong mating to reduce sperm competition. [13]

Oviposition

Females begin ovipositing the day after copulation and do so in one batch during a single oviposition event. Shorter and longer oviposition durations are associated with smaller and larger egg masses, which are directly related to female size. Just before beginning to oviposit, females exhibit dispersal behavior. They position themselves on a branch, spread their wings, and extend their abdominal tip around the branch to prepare for oviposition. As they oviposit, they move around the branch aligning the eggs, forming a ring-like structure around the branch. [12] They then cover their eggs with a foamy substance known as spumaline. It has been hypothesized that the spumaline cover protects eggs from predation and parasitism. [16] Offspring pass the winter inside their eggs. Although cold tolerant, they are susceptible to freezing in extreme cold temperatures, with the risk of mortality varying seasonally with changes in temperature and physiology. [14] Not much is known about parental effects on offspring survival during the winter. The only source of energy for overwintering forest tent caterpillar eggs comes from the parental generation. As a result, overwintering performance of the insect should be viewed in the context of parental fitness. [17]

Predation

Individual risk is lower in larger groups due to collective defense from predators, the dilution effect, and the selfish herd theory. All of these effects provide supplementary protection to individuals in the middle of the group. To compensate for group conspicuousness, caterpillars minimize movement, reducing their chances of being located by invertebrate predators. This behavior has associated costs because it decreases individual caterpillars’ selectiveness regarding food sources, as they will not be able to work to get better food sources. [18] Caterpillar grouping behaviors change depending on food source; on less favorable food sources, caterpillar groups tend to splinter, thereby potentially increasing the risk for predation. [19] Ontogenetic changes in caterpillars reduce the risk of predation and as a consequence, predation-related benefits of group foraging decrease with time. [20] Moreover, grouping in later instars has the extra cost of an increased risk of pathogen transmission. [9]

The entomophthoralean fungus Furia gastropachae (Racib.) S. Keller has long been associated with Forest tent caterpillar population decline in North American forests, including Florida, [21] Maryland and New York (state). Furia crustosa is now classed as a synonym of Furia gastropachae. [22] The species of fungus rarely infects species outside the genus Malacosoma. In 2002, Resting spores were observed even within the cadavers infected by other resting spores, a phenomenon not previously observed among the Entomophthorales. This allows the fungus to initiate cycles of secondary infection via conidia'. Also, host infection by resting spores was highest at intermediate levels of soil moisture. Infection of fourth instar larvae by resting spores and conidia was maximized at cooler temperatures (of 10 to 20°C). [23]

Outbreaks

The caterpillars are considered a problem when the larva population explodes in the spring. They can completely consume the foliage of a tree. Trees usually recover from this, refoliating within a month and resuming photosynthesis. Under most circumstances, little lasting damage is caused to the trees; however, the disappearance of foliage is considered to be an unattractive nuisance. On those rare occasions when infestations last for three years or more, tree mortality rates can become significant. Multiple outbreaks in Northern Ontario, Canada, in the 1990s resulted in over six consecutive years of aspen defoliation in some areas. One outbreak in upstate New York and Vermont began in 2002, with 650,000 acres (2600 km²) defoliated in New York and 230,000 acres (930 km²) in Vermont by 2005.

Forest tent caterpillar outbreaks tend to recur at reasonably regular intervals every decade or so, with the precise interval varying somewhat in time and space. Outbreaks usually last two to four years. Although the insect's distributional range is quite large, the area over which decadal outbreak cycles are synchronized (i.e. oscillating with the same phase) varies substantially. Outbreak cycles are more strongly synchronized in eastern Canada than in western Canada. Where spatially separated populations are phase-synchronized, the synchronization is thought to be due to the process of entrainment, that is, the synchronization of a circadian clock with the external environment.

The cause of the outbreak cycle is not known with certainty. There are a large number of natural mortality agents which could be responsible for population cycling, including parasitoids, predators, starvation, disease, and severe weather. Most infestations subside after one or two years as a result of a combination of these factors. The most common parasitoids associated with population decline are flies of the families Tachinidae and Sarcophagidae.

Related Research Articles

<i>Papilio polyxenes</i> Species of insect

Papilio polyxenes, the (eastern) black swallowtail, American swallowtail or parsnip swallowtail, is a butterfly found throughout much of North America. An extremely similar-appearing species, Papilio joanae, occurs in the Ozark Mountains region, but it appears to be closely related to Papilio machaon, rather than P. polyxenes. The species is named after the figure in Greek mythology, Polyxena, who was the youngest daughter of King Priam of Troy. Its caterpillar is called the parsley worm because the caterpillar feeds on parsley.

<i>Pieris rapae</i> Species of butterfly

Pieris rapae is a small- to medium-sized butterfly species of the whites-and-yellows family Pieridae. It is known in Europe as the small white, in North America as the cabbage white or cabbage butterfly, on several continents as the small cabbage white, and in New Zealand as the white butterfly. The butterfly is recognizable by its white color with small black dots on its wings, and it can be distinguished from P. brassicae by its larger size and the black band at the tip of its forewings.

<span class="mw-page-title-main">Eastern tent caterpillar</span> Species of moth

The eastern tent caterpillar is a species of moth in the family Lasiocampidae, the tent caterpillars or lappet moths. It is univoltine, producing one generation per year. It is a tent caterpillar, a social species that forms communal nests in the branches of trees. It is sometimes confused with the spongy moth and the fall webworm, and may be erroneously referred to as a bagworm, which is the common name applied to unrelated caterpillars in the family Psychidae. The moths oviposit almost exclusively on trees in the plant family Rosaceae, particularly cherry (Prunus) and apple (Malus). The caterpillars are hairy with areas of blue, white, black and orange. The blue and white colors are structural colors created by the selective filtering of light by microtubules that arise on the ball cuticle.

<span class="mw-page-title-main">Codling moth</span> Species of moth that feeds on fruit (Cydia pomonella)

The codling moth is a member of the Lepidopteran family Tortricidae. They are major pests to agricultural crops, mainly fruits such as apples and pears, and a codling moth larva is often called an "apple worm". Because the larvae are not able to feed on leaves, they are highly dependent on fruits as a food source and thus have a significant impact on crops. The caterpillars bore into fruit and stop it from growing, which leads to premature ripening. Various means of control, including chemical, biological, and preventive, have been implemented. This moth has a widespread distribution, being found on six continents. Adaptive behavior such as diapause and multiple generations per breeding season have allowed this moth to persist even during years of bad climatic conditions.

<span class="mw-page-title-main">Almond moth</span> Species of moth

The almond moth or tropical warehouse moth is a small, stored-product pest. Almond moths infest flour, bran, oats, and other grains, as well as dried fruits. It belongs to the family of snout moths (Pyralidae), and more specifically to the tribe Phycitini of the huge snout moth subfamily Phycitinae. This species may be confused with the related Indian mealmoth or the Mediterranean flour moth, which are also common pantry pests in the same subfamily.

<span class="mw-page-title-main">Tent caterpillar</span> Moth larvae from the genus Malacosoma

Tent caterpillars are moderately sized caterpillars, or moth larvae, belonging to the genus Malacosoma in the family Lasiocampidae. Twenty-six species have been described, six of which occur in North America and the rest in Eurasia. Some species are considered to have subspecies as well. They are often considered pests for their habit of defoliating trees. They are among the most social of all caterpillars and exhibit many noteworthy behaviors.

<span class="mw-page-title-main">Social caterpillars</span> Behaviors of caterpillars in society

The collective behaviors of social caterpillars falls into five general categories: collective and cooperative foraging, group defense against predators and parasitoids, shelter building, thermoregulation and substrate silking to enhance steadfastness.

<span class="mw-page-title-main">Mediterranean flour moth</span> Species of moth

The Mediterranean flour moth or mill moth is a moth of the family Pyralidae. It is a common pest of cereal grains, especially flour. This moth is found throughout the world, especially in countries with temperate climates. It prefers warm temperatures for more rapid development, but it can survive a wide range of temperatures.

<i>Choristoneura fumiferana</i> Species of moth

Choristoneura fumiferana, the eastern spruce budworm, is a species of moth of the family Tortricidae native to the eastern United States and Canada. The caterpillars feed on the needles of spruce and fir trees. Eastern spruce budworm populations can experience significant oscillations, with large outbreaks sometimes resulting in wide scale tree mortality. The first recorded outbreaks of the spruce budworm in the United States occurred in about 1807, and since 1909 there have been waves of budworm outbreaks throughout the eastern United States and Canada. In Canada, the major outbreaks occurred in periods circa 1910–20, c. 1940–50, and c. 1970–80, each of which impacted millions of hectares of forest. Longer-term tree-ring studies suggest that spruce budworm outbreaks have been recurring approximately every three decades since the 16th century, and paleoecological studies suggest the spruce budworm has been breaking out in eastern North America for thousands of years.

<i>Mythimna unipuncta</i> Species of moth

Mythimna unipuncta, the true armyworm moth, white-speck moth, common armyworm, or rice armyworm, is a species of moth in the family Noctuidae. The species was first described by Adrian Hardy Haworth in 1809. Mythimna unipuncta occurs in most of North America south of the Arctic, as well as parts of South America, Europe, Africa, and Asia. Although thought to be Neotropical in origin, it has been introduced elsewhere, and is often regarded as an agricultural pest. They are known as armyworms because the caterpillars move in lines as a massive group, like an army, from field to field, damaging crops.

<i>Malacosoma californicum</i> Species of insect

Malacosoma californicum, the western tent caterpillar, is a moth of the family Lasiocampidae. It is a tent caterpillar. The Western Tent Caterpillar is found in southern Canada, the western United States, and parts of northern Mexico. There are currently six recognized subspecies of M. californicum. Western tent caterpillars are gregarious and will spend a large portion of their time with other caterpillars in silken tents constructed during their larval stage.

<i>Eriogaster lanestris</i> Species of moth

Eriogaster lanestris, commonly known as the small eggar, is a moth of the family Lasiocampidae that is found across the Palearctic. Unlike many other members of the Lasiocampidae, the small eggar is a social insect. Historically, only eusocial insects like ants, bees, and termites were thought to exhibit complex social organization and communication systems. However, research since the late 20th century has found that E. lanestris, among a number of other phylogenetically related moth and butterfly species, demonstrates social behaviors as well. Larvae spend nearly their entire development in colonies of about 200 individuals, and this grouped social structure offers a number of benefits, from thermoregulation to increased foraging success.

<i>Utetheisa ornatrix</i> Species of moth

Utetheisa ornatrix, also called the ornate bella moth, ornate moth, bella moth or rattlebox moth, is a moth of the subfamily Arctiinae. It is aposematically colored ranging from pink, red, orange and yellow to white coloration with black markings arranged in varying patterns on its wings. It has a wingspan of 33–46 mm. Moths reside in temperate midwestern and eastern North America as well as throughout Mexico and other parts of Central America. Unlike most moths, the bella moth is diurnal. Formerly, the bella moth or beautiful utetheisa of temperate eastern North America was separated as Utetheisa bella. Now it is united with the bella moth in Utetheisa ornatrix.

<i>Arsenura armida</i> Species of moth

Arsenura armida, the giant silk moth, is a moth of the family Saturniidae. It is found mainly in South and Central America, from Mexico to Bolivia, and Ecuador to south-eastern Brazil. It was first described by Pieter Cramer in 1779.

<i>Parnassius smintheus</i> Species of butterfly

Parnassius smintheus, the Rocky Mountain parnassian or Rocky Mountain apollo, is a high-altitude butterfly found in the Rocky Mountains throughout the United States and Canada. It is a member of the snow Apollo genus (Parnassius) of the swallowtail family (Papilionidae). The butterfly ranges in color from white to pale yellow-brown, with red and black markings that indicate to predators it is unpalatable.

<span class="mw-page-title-main">Madrone butterfly</span> Species of butterfly

Eucheira socialis, commonly known as the Madrone butterfly is a lepidopteran that belongs to the family Pieridae. It was first described by John O. Westwood in 1834. Locally known as Mariposa del madroño or tzauhquiocuilin, it is endemic to the highlands of Mexico, and exclusively relies on the Madrone as a host-plant. The species is of considerable interest to lepidopterists due to gregarious nest-building in the larval stages, and heavily male-biased sex ratio. It takes an entire year for this adult butterfly to develop from an egg. The eggs are laid in the month of June and the adults emerge the following May–June. The adults have a black and white pattern on their wings, and the males are generally much smaller and paler than the females. The larvae do not undergo diapause and continue to feed and grow communally in the coldest months of the year. There are two subspecies of E. socialis, named E. socialis socialis and E. socialis westwoodi.

<i>Dryomyza anilis</i> Species of fly

Dryomyza anilis is a common fly from the family Dryomyzidae. The fly is found through various areas in the Northern hemisphere and has brown and orange coloration with distinctive large red eyes. The life span of the fly is not known, but laboratory-reared males can live 28–178 days. D. anilis has recently been placed back in the genus Dryomyza, of which it is the type species. Dryomyzidae were previously part of Sciomyzidae but are now considered a separate family with two subfamilies.

<i>Lymantria dispar dispar</i> Subspecies of moth (gypsy moth)

Lymantria dispar dispar, commonly known as the gypsy moth, European gypsy moth, LDD moth, or North American gypsy moth or spongy moth, is a species of moth in the family Erebidae. It has a native range that extends over Europe and parts of Africa, and is an invasive species in North America.

<i>Hemileuca lucina</i> Species of moth

Hemileuca lucina, the New England buck moth, is a species of moth in the family Saturniidae. This moth species is only found in the New England region of the United States. Larvae in early stages mainly feed on broadleaf meadowsweet whereas larvae in later stages show variation in food sources such as blackberry and black cherry leaves. Larvae have a black body with orange/black spines on their back that are used to deter predators. Pupation occurs during the summer and adult moths come out around September.

<i>Furia</i> (fungus) Genus of fungi

Furia is a genus of fungi within the family of Entomophthoraceae. This has been supported by molecular phylogenetic analysis.

References

  1. 1 2 Forest tent caterpillars, University of Florida James R. Meeker, Florida Department of Agriculture and Consumer Services. 2013 (accessed June 2018).
  2. 1 2 3 Fitzgerald, Terrence D. (1995). The Tent Caterpillars. Ithaca, NY: Cornell University Press.
  3. "common name: forest tent caterpillar". entnemdept.ufl.edu/. Retrieved 2020-07-30.
  4. 1 2 Fullard, James H.; Napoleone, Nadia (August 2001). "Diel flight periodicity and the evolution of auditory defences in the Macrolepidoptera". Animal Behaviour. 62 (2): 349–368. doi:10.1006/anbe.2001.1753. S2CID   53182157.
  5. McClure, Melanie; Ralph, Melissa; Despland, Emma (2011). "Group leadership depends on energetic state in a nomadic collective foraging caterpillar" (PDF). Behavioral Ecology and Sociobiology. 65 (8): 1573–1579. doi:10.1007/s00265-011-1167-5. S2CID   6071320.
  6. Despland, Emma; Sara Hamzeh (2004). "Ontogenetic changes in social behaviour in the forest tent caterpillar, Malacosoma disstria". Behavioral Ecology and Sociobiology. 56 (2): 177–184. doi:10.1007/s00265-004-0767-8. JSTOR   25063432. S2CID   26525039.
  7. Despland, Emma; Elsa Etilé (2008). "Developmental variation in the forest tent caterpillar: life history consequences of a threshold size for pupation". Oikos. 117 (1): 135–143. doi:10.1111/j.2007.0030-1299.16114.x.
  8. 1 2 McClure, Melanie; Cannel, Elizabeth; Despland, Emma (June 2011). "Thermal ecology and behaviour of the nomadic social forager Malacosoma disstria". Physiological Entomology. 36 (2): 120–127. doi:10.1111/j.1365-3032.2010.00770.x. S2CID   85188708.
  9. 1 2 3 4 5 Despland, Emma; Le Huu, Alice (February 2007). "Pros and cons of group living in the forest tent caterpillar: separating the roles of silk and of grouping". Entomologia Experimentalis et Applicata. 122 (2): 181–189. doi:10.1111/j.1570-7458.2006.00512.x. S2CID   86270319.
  10. 1 2 Fitzgerald, T. D. (July 2008). "Use of pheromone mimic to cause the disintegration and collapse of colonies of tent caterpillars ( Malacosoma spp.)". Journal of Applied Entomology. 132 (6): 451–460. doi:10.1111/j.1439-0418.2008.01286.x. S2CID   83824574.
  11. Emma, Despland (March 2013). "Plasticity of collective behavior in a nomadic early spring folivore". Frontiers in Physiology. 4: 4–54. doi: 10.3389/fphys.2013.00054 . PMC   3605510 . PMID   23526800.
  12. 1 2 3 4 5 6 Miller, William (2006). "Forest tent caterpillar: mating, oviposition, and adult congregation at town lights during a northern Minnesota outbreak". Journal of the Lepidopterists' Society. 60 (3): 156–160.
  13. 1 2 3 4 5 Bieman, Donald N.; J. A. Witter (June 1983). "Mating behavior of Malacosoma Disstria at two levels of mate competition". Florida Entomologist. 66 (2): 272–279. doi:10.2307/3494252. JSTOR   3494252.
  14. 1 2 Cooke, Barry J.; Jens Roland (2003). "The Effect of Winter Temperature on Forest Tent Caterpillar (Lepidoptera: Lasiocampidae) Egg Survival and Population Dynamics in Northern Climates". Environmental Entomology. 32 (2): 299–311. doi:10.1603/0046-225x-32.2.299.
  15. Myers, Judith H.; Barbara Kuken (1995). "Changes in the fecundity of tent caterpillars: a correlated character of disease resistance or sublethal effect of disease?". Oecologia. 103 (4): 475–480. Bibcode:1995Oecol.103..475M. doi:10.1007/bf00328686. PMID   28306996. S2CID   3464691.
  16. Williams, Daryl J.; David W. Langor (2011). "Distribution, species composition, and incidence of egg parasitoids of the forest tent caterpillar (Lepidoptera: Lasiocampidae), during a widespread outbreak in the Canadian prairies". The Canadian Entomologist. 143 (3): 272–278. doi:10.4039/n11-009. S2CID   85969201.
  17. Trudeau, M.; Y. Mauffette; S. Rochefort; E. Han; E.Bauce (2010). "Impact of Host Tree on Forest Tent Caterpillar Performance and Offspring Overwintering Mortality". Environ. Entomol. 39 (2): 498–504. doi: 10.1603/EN09139 . PMID   20388280. S2CID   6500698.
  18. McClure, Melanie; Emma Despland (2010). "Collective Foraging Patterns of Field Colonies of Malacosoma disstria Caterpillars". The Canadian Entomologist. 142 (5): 473–480. doi:10.4039/n10-001. S2CID   86385536.
  19. Plenzich, C.; Despland, E. (2018-04-02). "Host-plant mediated effects on group cohesion and mobility in a nomadic gregarious caterpillar". Behavioral Ecology and Sociobiology. 72 (4): 71. doi:10.1007/s00265-018-2482-x. ISSN   1432-0762. S2CID   4935701.
  20. McClure, Melanie; Despland, Emma (2011). "Defensive responses by a social caterpillar are tailored to different predators and change with larval instar and group size" (PDF). Naturwissenschaften. 5. 98 (5): 425–434. Bibcode:2011NW.....98..425M. doi:10.1007/s00114-011-0788-x. PMID   21475942. S2CID   36171434.
  21. Samson, Robert A.; Nigg, Herbert N. (June 1992). "Furia crustosa, Fungal Pathogen of Forest Tent Caterpillar in Florida". The Florida Entomologist. 75 (2): 280–284. doi:10.2307/3495633. JSTOR   3495633.
  22. Filotas, Melanie J.; Hajek, Ann E.; Humber, Richard A. (2 April 2012). "Prevalence and biology of Furia gastropachae (Zygomycetes: Entomophthorales) in populations of forest tent caterpillar (Lepidoptera: Lasiocampidae)". The Canadian Entomologist. 135 (3). Cambridge University Press: 359–378. doi:10.4039/n02-004. S2CID   85393118.
  23. Filotas, Melanie Jacqueline (2002). "Biology and Ecology of Furia Gastropachae a Fungal Pathogen of the Forest Tent Caterpillar Malacosoma Disstria" . Retrieved 30 December 2022.