Fundamental plane (elliptical galaxies)

Last updated

The fundamental plane is a set of bivariate correlations connecting some of the properties of normal elliptical galaxies. Some correlations have been empirically shown.

Contents

The fundamental plane is usually expressed as a relationship between the effective radius, average surface brightness and central velocity dispersion of normal elliptical galaxies. Any one of the three parameters may be estimated from the other two, as together they describe a plane that falls within their more general three-dimensional space. Properties correlated also include: color, density (of luminosity, mass, or phase space), luminosity, mass, metallicity, and, to a lesser degree, the shape of their radial surface brightness profiles.

Motivation

Many characteristics of a galaxy are correlated. For example, as one would expect, a galaxy with a higher luminosity has a larger effective radius. The usefulness of these correlations is when a characteristic that can be determined without prior knowledge of the galaxy's distance (such as central velocity dispersion – the Doppler width of spectral lines in the central parts of the galaxy) can be correlated with a property, such as luminosity, that can be determined only for galaxies of a known distance. With this correlation, one can determine the distance to galaxies, a difficult task in astronomy.

Correlations

The following correlations have been empirically shown for elliptical galaxies:

Usefulness

The usefulness of this three dimensional space is studied by plotting against , where is the mean surface brightness expressed in magnitudes. The equation of the regression line through this plot is:

or

.

Thus by measuring observable quantities such as surface brightness and velocity dispersion (both independent of the observer's distance to the source) one can estimate the effective radius (measured in kpc) of the galaxy. As one now knows the linear size of the effective radius and can measure the angular size, it is easy to determine the distance of the galaxy from the observer through the small-angle approximation.

Variations

An early use of the fundamental plane is the correlation, given by:

determined by Dressler et al. (1987). Here is the diameter within which the mean surface brightness is . This relationship has a scatter of 15% between galaxies, as it represents a slightly oblique projection of the Fundamental Plane.

Fundamental Plane correlations provide insights into the formative and evolutionary processes of elliptical galaxies. Whereas the tilt of the Fundamental Plane relative to the naive expectations from the Virial Theorem is reasonably well understood, the outstanding puzzle is its small thickness.

Interpretation

The observed empirical correlations reveal information on the formation of elliptical galaxies. In particular, consider the following assumptions

These relations imply that , therefore and so .

However, there are observed deviations from homology, i.e. with in the optical band. This implies that so so that . This is consistent with the observed relation.

Two limiting cases for the assembly of galaxies are as follows.

The observed relation lies between these limits.

Notes

Diffuse dwarf ellipticals do not lie on the fundamental plane as shown by Kormendy (1987). Gudehus (1991) [3] found that galaxies brighter than lie on one plane, and those fainter than this value, , lie on another plane. The two planes are inclined by about 11 degrees.

Related Research Articles

In quantum mechanics, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a particle, such as position, x, and momentum, p, can be predicted from initial conditions.

In mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by potential forces, with that of the total potential energy of the system. Mathematically, the theorem states

The Ising model, named after the physicist Ernst Ising, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states. The spins are arranged in a graph, usually a lattice, allowing each spin to interact with its neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different structural phases. The model allows the identification of phase transitions, as a simplified model of reality. The two-dimensional square-lattice Ising model is one of the simplest statistical models to show a phase transition.

Cosmic distance ladder

The cosmic distance ladder is the succession of methods by which astronomers determine the distances to celestial objects. A real direct distance measurement of an astronomical object is possible only for those objects that are "close enough" to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity.

Granular material

A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact. The constituents that compose granular material are large enough such that they are not subject to thermal motion fluctuations. Thus, the lower size limit for grains in granular material is about 1 μm. On the upper size limit, the physics of granular materials may be applied to ice floes where the individual grains are icebergs and to asteroid belts of the Solar System with individual grains being asteroids.

The Lawson criterion is a figure of merit used in nuclear fusion research. It compares the rate of energy being generated by fusion reactions within the fusion fuel to the rate of energy losses to the environment. When the rate of production is higher than the rate of loss, and enough of that energy is captured by the system, the system is said to be ignited.

In probability theory and statistics, given a stochastic process, the autocovariance is a function that gives the covariance of the process with itself at pairs of time points. Autocovariance is closely related to the autocorrelation of the process in question.

In mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, on a complex projective space CPn endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study.

Satellite galaxy Galaxy that orbits a larger galaxy due to gravitational attraction

A satellite galaxy is a smaller companion galaxy that travels on bound orbits within the gravitational potential of a more massive and luminous host galaxy. Satellite galaxies and their constituents are bound to their host galaxy, in the same way that planets within our own solar system are gravitationally bound to the Sun. While most satellite galaxies are dwarf galaxies, satellite galaxies of large galaxy clusters can be much more massive. The Milky Way is orbited by about fifty satellite galaxies, the largest of which is the Large Magellanic Cloud.

In quantum field theory and statistical mechanics, the Mermin–Wagner theorem states that continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions d ≤ 2. Intuitively, this means that long-range fluctuations can be created with little energy cost and since they increase the entropy they are favored.

Faber–Jackson relation

The Faber–Jackson relation provided the first empirical power-law relation between the luminosity and the central stellar velocity dispersion of elliptical galaxy, and was presented by the astronomers Sandra M. Faber and Robert Earl Jackson in 1976. Their relation can be expressed mathematically as:

Intrabeam scattering (IBS) is an effect in accelerator physics where collisions between particles couple the beam emittance in all three dimensions. This generally causes the beam size to grow. In proton accelerators, intrabeam scattering causes the beam to grow slowly over a period of several hours. This limits the luminosity lifetime. In circular lepton accelerators, intrabeam scattering is counteracted by radiation damping, resulting in a new equilibrium beam emittance with a relaxation time on the order of milliseconds. Intrabeam scattering creates an inverse relationship between the smallness of the beam and the number of particles it contains, therefore limiting luminosity.

Angle-resolved photoemission spectroscopy Experimental technique to determine the distribution of electrons in solids

Angle-resolved photoemission spectroscopy (ARPES) is a powerful technique used in condensed matter physics to probe the structure of the electrons in a material, usually a crystalline solid. The technique is best suited for use in one- or two-dimensional materials. It is based on the photoelectric effect, in which an incoming photon of sufficient frequency dislodges an electron from the surface of a material. By directly measuring the kinetic energy and momentum distributions of the emitted photoelectrons, the technique can be used to map the electronic band structure, provide elemental information, and map Fermi surfaces. ARPES has been used by physicists to investigate high-temperature superconductors and materials exhibiting charge density waves.

Sersic profile

The Sérsic profile is a mathematical function that describes how the intensity of a galaxy varies with distance from its center. It is a generalization of de Vaucouleurs' law. José Luis Sérsic first published his law in 1963.

In astronomy, rotational Brownian motion is the random walk in orientation of a binary star's orbital plane, induced by gravitational perturbations from passing stars.

Firehose instability

The firehose instability is a dynamical instability of thin or elongated galaxies. The instability causes the galaxy to buckle or bend in a direction perpendicular to its long axis. After the instability has run its course, the galaxy is less elongated than before. Any sufficiently thin stellar system, in which some component of the internal velocity is in the form of random or counter-streaming motions, is subject to the instability.

Electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.

In statistical mechanics, the Griffiths inequality, sometimes also called Griffiths–Kelly–Sherman inequality or GKS inequality, named after Robert B. Griffiths, is a correlation inequality for ferromagnetic spin systems. Informally, it says that in ferromagnetic spin systems, if the 'a-priori distribution' of the spin is invariant under spin flipping, the correlation of any monomial of the spins is non-negative; and the two point correlation of two monomial of the spins is non-negative.

Photon statistics is the theoretical and experimental study of the statistical distributions produced in photon counting experiments, which use Photodetectors to analyze the intrinsic statistical nature of photons in a light source. In these experiments, light incident on the photodetector generates photoelectrons and a counter registers electrical pulses generating a statistical distribution of photon counts. Low intensity disparate light sources can be differentiated by the corresponding statistical distributions produced in the detection process.

In statistics, functional correlation is a dimensionality reduction technique used to quantify the correlation and dependence between two variables when the data is functional. Several approaches have been developed to quantify the relation between two functional variables.

References

  1. Gudehus, D. "Radius-parameter and surface brightness as a function of galaxy total magnitude for clusters of galaxies", Astronomical J., vol. 78, pp. 583–593 (1973)
  2. Djorgovski, S., and Davis, M. "Fundamental properties of elliptical galaxies", Astrophys. J., vol. 313, pp. 50–69 (1987); downloadable through http://adsabs.harvard.edu/abs/1987ApJ...313...59D
  3. Gudehus, D. "Systematic bias in cluster galaxy data, affecting galaxy distances and evolutionary history", Astrophys. J., vol. 382, pp. 1–18 (1991)