Halimeda Temporal range: | |
---|---|
Halimeda tuna | |
Scientific classification | |
Clade: | Viridiplantae |
Division: | Chlorophyta |
Class: | UTC clade |
Order: | Bryopsidales |
Family: | Halimedaceae |
Genus: | Halimeda J.V.Lamouroux, 1812 |
Type species | |
Halimeda tuna | |
Species [2] | |
See text |
Halimeda is a genus of green macroalgae. The algal body (thallus) is composed of calcified green segments. Calcium carbonate is deposited in its tissues, making it inedible to most herbivores. However one species, Halimeda tuna , was described as pleasant to eat with oil, vinegar, and salt. [3] [4]
As in other members of the order Bryopsidales, individual organisms are made up of single multi-nucleate cells. Whole meadows may consist of a single individual alga connected by fine threads running through the substrate. [5]
Halimeda is responsible for distinctive circular deposits in various parts of the Great Barrier Reef on the north-east coast of Queensland, Australia. [6] Halimeda beds form in the western or lee side of outer shield reefs where flow of nutrient-rich water from the open sea allows them to flourish, [7] and are the most extensive, actively accumulating Halimeda beds in the world.
The genus is one of the best studied examples of cryptic species pairs due to morphological convergence within the marine macroalgae. [8] [9] [10]
Some species grow so vigorously in tropical lagoons that the sediment is composed solely of the remains of their tissues, forming a calcareous "Halimeda sand". In fact some tropical reef systems, such as atolls, consist largely of Halimeda sand accumulated over the aeons. [11] Overall, Halimeda represents the most common green algea large grains in the sediment of the lower latitudes. [12]
The genus Halimeda J.V. Lamouroux belongs to the order Bryopsidales under the family Halimedaceae. It has five monophyletic sections - Halimeda J.V. Lamouroux, Micronesicae Hillis-Col, Opuntia J. Agardh ex De Toni, Pseudo-opuntia J. Agardh ex De Toni, and Rhipsalis J. Agardh ex De Toni [13] - which were based on the differences in the fusions of medullary siphons. [10] Halimeda tuna serves as the holotype for the genus. [14] [15] There are 71 species and 67 infraspecific names listed on Algaebase as of 2015. [14]
The thalli of Halimeda is distinctly segmented and calcified. Calcium carbonate is deposited as aragonite and calcification begins as early as 36 hours. Their segments are composed of 60-80% aragonite [8] [16] and are separated by nodes which are non-calcified. [14] The thalli are composed of siphons which are ramified into medullary filaments surrounded by a cortex. The medullary filaments branch out trichotomously to form peripheral utricles which stick to each other to enclose the intersiphonal spaces of each segment. It is in these spaces that aragonite is precipitated. [17] [4]
Halimeda has three types of holdfasts which serve as attachment points to the substrate. The "sprawler" type has a few loose filaments growing at the ends or in between the segments (Fig. 1). In the "rock-grower" type, the matted holdfast is composed of branched filaments which secure the thallus to a rock surface. The last type is the "sand-grower", where the filaments hold on to fine sand particles, forming a root-like structure. [4] Halimeda is coenocytic and siphonous, meaning its cells are not divided by cross walls, and is instead a continuous filament of cells. This differentiates the genus from Acetabularia, which is another genus of green seaweed that is calcified. [4]
Halimeda is highly abundant in the tropics including the Thai-Malay Peninsula [18] and the Florida Keys. [19] Some species (e.g. H. copiosa, discoidea, gracilis, opuntia, simulans, and tuna) have a global distribution. Halimeda tuna is found solely in the Mediterranean. [14]
Species of Halimeda with sand-grower type holdfasts grow on sandy or muddy substrates, and are thus common in lagoons and backreefs. [14] Those with the "sprawler" type are abundant in forereefs and on coral pinnacles. [14]
Being a calcareous alga, Halimeda has been found to have good potential as a carbon sink and can play an important role in regulating the ocean's carbon budget. [20] Some species such as H. opuntia have been found to produce up to 54.37 g CaCO3 m−1 yr−1. [21] The genus also contributes to reef building, as it is large producer of carbon sediments on reefs, generating a wide range of sediment sizes from coarse particles to silt and clay. [22] [23]
Although it was largely assumed that its abundance on reefs is due to it being unpalatable to herbivores, more recent studies have found that Halimeda is in fact subject to grazing by some herbivores such as Scarus rivulatus, Hipposcarus longiceps, and Chlorurus microrhinos. [24] Hard coral cover can actually play a key role in maintaining Halimeda biomass on reefs, as one study found that thalli growing under the canopy of Acropora colonies were larger than those in open areas exposed to herbivory. [25]
Halimeda reproduces both sexually and asexually. Sexual reproduction is rarely observed because it is completed in 36 hours. [15] The process begins with gametangia forming on the edges of the segments of the thalli. By the next day, the cells of the thallus will have been entirely converted to gametangia. These will mature overnight and release gametes in the morning of the next day, after which the thallus is left white and dies in a process known as holocarpy. [4] [15] [26] Some species of Halimeda have been found to reproduce synchronously in mass spawning events similar to that of corals, albeit occurring over several months, with small portions of the population spawning each day. [26] [27] Therefore it is likely that the life span of the genus is limited to a few months to a year. [15]
Information on the phases of Halimeda's life cycle are limited. It is thought that there is a haploid gametophyte phase, which might be followed by a sporophyte phase, since it not yet known when meiosis occurs. [15]
Asexual reproduction occurs via vegetative "cloning" through fragmentation and dispersal. [4] [28] [15]
The genus' photosynthetic pigments are those typical of class Chlorophyta (chlorophyll a and b) and also include siphonoxanthin and siphonein. [15]
Currently, Halimeda does not appear to be cultivated for aquaculture purposes.
Methanol and dimethyformamide extracts of Halimeda opuntia have been observed to have antibacterial properties against some species of microorganisms, including Saccharomyces cerevisiae, Escherichia coli, Bacillus subtilis, and most significantly, Staphylococcusaureus. [29] Halimeda opuntia ethanol extract exhibited activity against hepatitis C virus (HCV) due to polymerase inhibitory (HCV-796) binding sites based on molecular docking simulation. [30] [31] Methanolic extracts of Halimeda macroloba have recently been found to exhibit cytotoxicity towards MCF-7 and HT 29 cells, which are derived from human breast cancer cell lines and colon cancer lines, respectively. [32] These results therefore suggest the genus' potential for cultivation as a food source. [32] An experiment on rats showed that free phenolic acids of Halimeda monile have antioxidant properties which could aid in protecting against liver problems. [33] Halimeda tuna appears to be used as fodder in the Philippines. [34]
Coralline algae are red algae in the order Corallinales. They are characterized by a thallus that is hard because of calcareous deposits contained within the cell walls. The colors of these algae are most typically pink, or some other shade of red, but some species can be purple, yellow, blue, white, or gray-green. Coralline algae play an important role in the ecology of coral reefs. Sea urchins, parrot fish, and limpets and chitons feed on coralline algae. In the temperate Mediterranean Sea, coralline algae are the main builders of a typical algal reef, the Coralligène ("coralligenous"). Many are typically encrusting and rock-like, found in marine waters all over the world. Only one species lives in freshwater. Unattached specimens may form relatively smooth compact balls to warty or fruticose thalli.
Caulerpa is a genus of seaweeds in the family Caulerpaceae. They are unusual because they consist of only one cell with many nuclei, making them among the biggest single cells in the world.
Crustose is a habit of some types of algae and lichens in which the organism grows tightly appressed to a substrate, forming a biological layer. Crustose adheres very closely to the substrates at all points. Crustose is found on rocks and tree bark. Some species of marine algae of the Rhodophyta, in particular members of the order Corallinales, family Corallinaceae, subfamily Melobesioideae with cell walls containing calcium carbonate grow to great depths in the intertidal zone, forming crusts on various substrates. The substrate can be rocks throughout the intertidal zone, or, as in the case of the Corallinales, reef-building corals, and other living organisms including plants, such as mangroves and animals such as shelled molluscs. The coralline red algae are major members of coral reef communities, cementing the corals together with their crusts. Among the brown algae, the order Ralfsiales comprises two families of crustose algae.
Codium is a genus of edible green macroalgae under the order Bryopsidales. The genus name is derived from a Greek word that pertains to the soft texture of its thallus. One of the foremost experts on Codium taxonomy was Paul Claude Silva at the University of California, Berkeley. Silva was able to describe 36 species for the genus, and in honor of his work on Codium, the species C. silvae was named after the late professor.
Udoteaceae is a family of green algae, in the order Bryopsidales.
Bryopsis, often referred to a hair algae, is a genus of marine green algae in the family Bryopsidaceae. Species in the genus are macroscopic, siphonous marine green algae that are made up of units of single tubular filaments. They can form dense tufts up to 40 cm in height. Each cell is made of up an erect thallus that is often branched into pinnules. Approximately 60 species have been identified in this genus since its initial discovery in 1809. The ecological success of Bryopsis has also been attributed to its associations with endophytic bacteria that reside in the cytoplasm of their cells.
Rhipiliopsis is a genus of green algae in the family Rhipiliaceae. Johnson-sea-linkia is a synonym.
Struvea is a genus of green macroalgae in the family Boodleaceae.
Udotea is a genus of green algae in the family Udoteaceae.
The genus Umbraulva, which is a green alga within the Ulvaceae family, was proposed by Bae and Lee in 2001. Three additional species, including U. kuaweuweu, which was subsequently transferred to another genus, have been added to the genus since it originally had the three species that were initially examined to form the genus. Umbraulva species grow upon hard substrates, and inhabit deep subtidal areas. Species within this genus are widely distributed, and have been identified in Asia, Europe, Hawaii, and New Zealand. The morphological traits of Umbraulva vary among species, but commonly, Umbraulva are macroscopic with olive green blades containing the photosynthetic pigment siphonaxanthin. The blades are flattened and ellipsoid in shape, or are narrow and oval shaped, with perforations and/or lobes present throughout the blade. As Umbraulva often appear very similar in morphology to closely related groups, the main manner in which Umbraulva was differentiated from related groups was through the divergence of ITS and partial SSU rDNA sequences from those of other Ulva species. Umbraulva is closely related to Ulva, which due to wide distributions, high carbohydrate levels, and a lack of lignin, is a good candidate for use in biofuel, bioremediation, carbon sequestration, and animal feed production.
Turbinaria is a genus of brown algae (Phaeophyceae) found primarily in tropical marine waters. It generally grows on rocky substrates. In tropical Turbinaria species that are often preferentially consumed by herbivorous fishes and echinoids, there is a relatively low level of phenolics and tannins.
The Klebsormidiaceae are a family containing five genera of charophyte green alga forming multicellular, non-branching filaments. The genus Chlorokybus was previously included as well, but this problematic and poorly known genus is now placed in a separate class Chlorokybophyceae.
Halimeda tuna is a species of calcareous green seaweed in the order Bryopsidales. It is found on reefs in the Atlantic Ocean, the Indo-Pacific region and the Mediterranean Sea. Halimeda tuna is the type species of the genus Halimeda and the type locality is the Mediterranean Sea. The specific name "tuna" comes from the Taíno language, meaning "cactus" and referring to the resemblance of the thallus to the growth form of an Opuntia cactus.
Hildenbrandia is a genus of thalloid red alga comprising about 26 species. The slow-growing, non-mineralized thalli take a crustose form. Hildenbrandia reproduces by means of conceptacles and produces tetraspores.
The epithallium or epithallus is the outer layer of a crustose coralline alga, which in some species is periodically shed to prevent organisms from attaching to and overgrowing the alga.
Llewellya Williams Hillis, later Llewellya Hillis-Colinvaux, was a Canadian-born American marine biologist.
Udotea flabellum is a species of photosynthetic macroalgae. It is commonly found in shallow waters around Florida and Belize in sandy areas, sea grass beds, and coral reefs. It is known for its antimicrobial properties and is also being used in cancer treatment studies.
Halimeda opuntia, sometimes known as the watercress alga, is a species of calcareous green seaweed in the order Bryopsidales. It is native to reefs in the Indo-Pacific region, the Atlantic Ocean and the Mediterranean Sea.
Crustaphytum is a genus of red alga first discovered in Taoyuan algal reefs by Taiwanese scientists. The epithet “crusta” refers to crustose thallus and “phytum” refers to plant. Belonging to the family Hapalidiaceae in the order Hapalidiales, Crustaphytum is one kind of crustose coralline algae.
Peyssonneliales is a monotypic order of red algae belonging to the class Florideophyceae and the subclass Rhodymeniophycidae. It contains only 1 known family, PeyssonneliaceaeDenizot, M., 1968.
Nà Theophraftus (1. cap. hist. c. 12) scribit circa Opuntem herbulam effe quandam, quae ex foliis radicem mittat, ac cum suauitate mandi possit. Plinius verò ipsum sequutus (21.cap.17) circa Opuntem, inquit, Opuntia est herba, etiam homini-dulcis: mirúmque è folio ejus radicem sièri, ac sic eam nasci. Et certè credibile est hanc plantam recentem cum aceto, sale, & oleo, vel etiam sine sale, non minùs suauiter edi posse quàm Portulacae marinae & sìmilium folia.