Julian Parkhill | |
---|---|
Born | [1] | 23 September 1964
Education | Westcliff High School for Boys |
Alma mater |
|
Known for | ARTEMIS [2] [3] [4] |
Scientific career | |
Fields | |
Institutions | |
Thesis | Regulation of transcription of the mercury resistance operon of Tn501 (1991) |
Website | www |
Julian Parkhill (born 1964) [1] is Professor of Bacterial Evolution in the Department of Veterinary Medicine [8] at the University of Cambridge. He previously served as head of pathogen genomics at the Wellcome Sanger Institute. [9] [10] [11] [12] [5] [13] [14]
Parkhill was educated at Westcliff High School for Boys, [1] the University of Birmingham and the University of Bristol where he was awarded a PhD in 1991 [15] for research into the regulation of transcription of the mercury resistance operon. [6] [7] [16]
Parkhill uses high throughput sequencing and phenotyping to study pathogen diversity and variation, how they affect virulence and transmission, and what they tell us about the evolution of pathogenicity and host–pathogen interaction. [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [ excessive citations ] Research in the Parkill Laboratory has been funded the Wellcome Trust, the Biotechnology and Biological Sciences Research Council (BBSRC) [30] and the Medical Research Council (MRC). [31]
Parkhill was elected a Fellow of the Academy of Medical Sciences (FMedSci) in 2009, [32] and a Fellow of the American Academy of Microbiology (FAAM) in 2012.
Dr. Julian Parkhill is currently Head of Pathogen Genomics at the Wellcome Trust Sanger Institute. Over the last decade or so, his group has analysed the genomes of many bacteria of fundamental importance for human health, including the causative agents of tuberculosis, plague, typhoid fever, whooping cough, leprosy, botulism, diphtheria and meningitis, as well as nosocomial pathogens such as Clostridioides difficile and MRSA, and food-borne pathogens such as Campylobacter jejuni , Salmonella Typhimurium and Yersinia enterocolitica . Their current research focuses on the application of high-throughput sequencing techniques to microbiology. They are currently sequencing very large collections of bacterial isolates with broad geographic and temporal spreads, linking genomic variation to epidemiology, acquisition of drug resistance, and recent evolution. In addition, they are working with local and national clinical microbiology groups to build the foundations for the transfer of microbial sequencing to clinical and public health investigations. They are also applying sequencing technologies to phenotypic investigations, particularly saturation transposon mutagenesis, transcriptomics and high-throughput phenotyping. They collaborate widely, particularly with groups in developing countries where infectious diseases are endemic. [33]
Parkhill was elected a Fellow of the Royal Society (FRS) in 2014, [34] his certificate of election reads:
Julian Parkhill has played a major role in determining the reference genome sequences of many key bacterial pathogens, including Mycobacterium tuberculosis , Yersinia pestis and Salmonella typhi. As well as providing complete catalogues of the arsenal of genes carried by each bacterium, Parkhill's work has led to important insights into how bacterial genomes evolve and the effect of variation within supposedly homogeneous bacterial populations. In parallel, tools to understand and visualise genomic data have been developed, and freely disseminated worldwide. Over a decade, Parkhill has been at the forefront of bacterial genomics, most recently using new high throughput sequencing technologies to explore evolution and transmission in bacterial pathogens, and enable the clinical use of these approaches. [34]
Campylobacter is a type of bacteria that can cause a diarrheal disease in people. Its name means "curved bacteria", as the germ typically appears in a comma or "s" shape. According to its scientific classification, it is a genus of gram-negative bacteria that is motile.
Neisseria is a large genus of bacteria that colonize the mucosal surfaces of many animals. Of the 11 species that colonize humans, only two are pathogens, N. meningitidis and N. gonorrhoeae.
Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a method called sequencing. The broad field may also be referred to as environmental genomics, ecogenomics, community genomics or microbiomics.
The Actinomycetales is an order of Actinomycetota. A member of the order is often called an actinomycete. Actinomycetales are generally gram-positive and anaerobic and have mycelia in a filamentous and branching growth pattern. Some actinomycetes can form rod- or coccoid-shaped forms, while others can form spores on aerial hyphae. Actinomycetales bacteria can be infected by bacteriophages, which are called actinophages. Actinomycetales can range from harmless bacteria to pathogens with resistance to antibiotics.
The Wellcome Sanger Institute, previously known as The Sanger Centre and Wellcome Trust Sanger Institute, is a non-profit British genomics and genetics research institute, primarily funded by the Wellcome Trust.
Microbiota are the range of microorganisms that may be commensal, mutualistic, or pathogenic found in and on all multicellular organisms, including plants. Microbiota include bacteria, archaea, protists, fungi, and viruses, and have been found to be crucial for immunologic, hormonal, and metabolic homeostasis of their host.
Pathogenomics is a field which uses high-throughput screening technology and bioinformatics to study encoded microbe resistance, as well as virulence factors (VFs), which enable a microorganism to infect a host and possibly cause disease. This includes studying genomes of pathogens which cannot be cultured outside of a host. In the past, researchers and medical professionals found it difficult to study and understand pathogenic traits of infectious organisms. With newer technology, pathogen genomes can be identified and sequenced in a much shorter time and at a lower cost, thus improving the ability to diagnose, treat, and even predict and prevent pathogenic infections and disease. It has also allowed researchers to better understand genome evolution events - gene loss, gain, duplication, rearrangement - and how those events impact pathogen resistance and ability to cause disease. This influx of information has created a need for bioinformatics tools and databases to analyze and make the vast amounts of data accessible to researchers, and it has raised ethical questions about the wisdom of reconstructing previously extinct and deadly pathogens in order to better understand virulence.
Richard Michael Durbin is a British computational biologist and Al-Kindi Professor of Genetics at the University of Cambridge. He also serves as an associate faculty member at the Wellcome Sanger Institute where he was previously a senior group leader.
Laurence Daniel Hurst is a Professor of Evolutionary Genetics in the Department of Biology and Biochemistry at the University of Bath and the director of the Milner Centre for Evolution.
Digital transcriptome subtraction (DTS) is a bioinformatics method to detect the presence of novel pathogen transcripts through computational removal of the host sequences. DTS is the direct in silico analogue of the wet-lab approach representational difference analysis (RDA), and is made possible by unbiased high-throughput sequencing and the availability of a high-quality, annotated reference genome of the host. The method specifically examines the etiological agent of infectious diseases and is best known for discovering Merkel cell polyomavirus, the suspect causative agent in Merkel-cell carcinoma.
Suzanna (Suzi) E. Lewis was a scientist and Principal investigator at the Berkeley Bioinformatics Open-source Project based at Lawrence Berkeley National Laboratory until her retirement in 2019. Lewis led the development of open standards and software for genome annotation and ontologies.
Bacterial genomes are generally smaller and less variant in size among species when compared with genomes of eukaryotes. Bacterial genomes can range in size anywhere from about 130 kbp to over 14 Mbp. A study that included, but was not limited to, 478 bacterial genomes, concluded that as genome size increases, the number of genes increases at a disproportionately slower rate in eukaryotes than in non-eukaryotes. Thus, the proportion of non-coding DNA goes up with genome size more quickly in non-bacteria than in bacteria. This is consistent with the fact that most eukaryotic nuclear DNA is non-gene coding, while the majority of prokaryotic, viral, and organellar genes are coding. Right now, we have genome sequences from 50 different bacterial phyla and 11 different archaeal phyla. Second-generation sequencing has yielded many draft genomes ; third-generation sequencing might eventually yield a complete genome in a few hours. The genome sequences reveal much diversity in bacteria. Analysis of over 2000 Escherichia coli genomes reveals an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Genome sequences show that parasitic bacteria have 500–1200 genes, free-living bacteria have 1500–7500 genes, and archaea have 1500–2700 genes. A striking discovery by Cole et al. described massive amounts of gene decay when comparing Leprosy bacillus to ancestral bacteria. Studies have since shown that several bacteria have smaller genome sizes than their ancestors did. Over the years, researchers have proposed several theories to explain the general trend of bacterial genome decay and the relatively small size of bacterial genomes. Compelling evidence indicates that the apparent degradation of bacterial genomes is owed to a deletional bias.
Rhizobium leguminosarum is a bacterium which lives in a mutualistic symbiotic relationship with legumes, and has the ability to fix free nitrogen from the air. R. leguminosarum has been very thoroughly studied—it has been the subject of more than a thousand publications.
Citrobacter rodentium is a Gram-negative species of bacteria first described in 1996. It infects the intestinal tract of rodents.
Mark Achtman is an emeritus Professor of Bacterial Population Genetics at Warwick Medical School, part of the University of Warwick in the UK.
Transcriptomics technologies are the techniques used to study an organism's transcriptome, the sum of all of its RNA transcripts. The information content of an organism is recorded in the DNA of its genome and expressed through transcription. Here, mRNA serves as a transient intermediary molecule in the information network, whilst non-coding RNAs perform additional diverse functions. A transcriptome captures a snapshot in time of the total transcripts present in a cell. Transcriptomics technologies provide a broad account of which cellular processes are active and which are dormant. A major challenge in molecular biology is to understand how a single genome gives rise to a variety of cells. Another is how gene expression is regulated.
Duncan John Maskell, is a British and Australian biochemist, academic, and academic administrator, who specialises in molecular microbiology and bacterial infectious diseases. Since 2018, he has been vice-chancellor of the University of Melbourne, Australia but retires in 2025. He previously taught at the University of Cambridge, England.
"All text published under the heading 'Biography' on Fellow profile pages is available under Creative Commons Attribution 4.0 International License." -- "Royal Society Terms, conditions and policies". Archived from the original on 25 September 2015. Retrieved 9 March 2016.{{cite web}}
: CS1 maint: bot: original URL status unknown (link)