The kappa effect or perceptual time dilation [1] is a temporal perceptual illusion that can arise when observers judge the elapsed time between sensory stimuli applied sequentially at different locations. In perceiving a sequence of consecutive stimuli, subjects tend to overestimate the elapsed time between two successive stimuli when the distance between the stimuli is sufficiently large, and to underestimate the elapsed time when the distance is sufficiently small.
The kappa effect can occur with visual (e.g., flashes of light), auditory (e.g., tones), or tactile (e.g. taps to the skin) stimuli. Many studies of the kappa effect have been conducted using visual stimuli. For example, suppose three light sources, X, Y, and Z, are flashed successively in the dark with equal time intervals between each of the flashes. If the light sources are placed at different positions, with X and Y closer together than Y and Z, the temporal interval between the X and Y flashes is perceived to be shorter than that between the Y and Z flashes. [2] The kappa effect has also been demonstrated with auditory stimuli that move in frequency. [3] However, in some experimental paradigms the auditory kappa effect has not been observed. For example, Roy et al. (2011) found that, opposite to the prediction of the kappa effect, "Increasing the distance between sound sources marking time intervals leads to a decrease of the perceived duration". [4] In touch, the kappa effect was first described as the "S-effect" by Suto (1952). [5] Goldreich (2007) [6] refers to the kappa effect as "perceptual time dilation" in analogy with the physical time dilation of the theory of relativity.
Physically, traversed space and elapsed time are linked by velocity. Accordingly, several theories regarding the brain's expectations about stimulus velocity have been put forward to account for the kappa effect.
According to the constant velocity hypothesis proposed by Jones and Huang (1982), the brain incorporates a prior expectation of speed when judging spatiotemporal intervals. Specifically, the brain expects temporal intervals that would produce constant velocity (i.e., uniform motion) movement. [7] [8] Thus, the kappa effect occurs when we apply our knowledge of motion to stimulus sequences, which sometimes leads us to make mistakes. [9] Evidence for the role of a uniform motion expectation in temporal perception comes from a study [10] in which participants observed eight white dots that successively appeared in one direction in a horizontal alignment along a straight line. When the temporal separation was constant and the spatial separation between the dots varied, they observed the kappa effect, which follows the constant velocity hypothesis. However, when both the temporal and spatial separation between the dots varied, they failed to observe the response pattern that the constant velocity hypothesis predicts. A possible explanation is that it is difficult to perceive a uniform motion from such varying, complicated patterns; thus, the context of observed events may affect our temporal perception.
A Bayesian perceptual model [6] replicates the tactile kappa effect and other tactile spatiotemporal illusions, including the tau effect and the cutaneous rabbit illusion. According to this model, brain circuitry encodes the expectation that tactile stimuli tend to move slowly. The Bayesian model reaches an optimal probabilistic inference by combining uncertain spatial and temporal sensory information with a prior expectation for low-speed movement. The expectation that stimuli tend to move slowly results in the perceptual overestimation of the time elapsed between rapidly successive taps applied to separate skin locations. Simultaneously, the model perceptually underestimates the spatial separation between stimuli, thereby reproducing the cutaneous rabbit illusion and the tau effect. Goldreich (2007) [6] speculated that a Bayesian slow-speed prior might explain the visual kappa effect as well the tactile one. Recent empirical studies support this suggestion. [11] [12]
The kappa effect appears to depend strongly on phenomenal rather than physical extent. [7] The kappa effect gets bigger as stimuli move faster. [8] Observers tend to apply their previous knowledge of motion to a sequence of stimuli. When subjects observed vertically arranged stimuli, the kappa effect was stronger for sequences moving downward. This can be attributed to the expectation of downward acceleration and upward deceleration, in that the perceived accelerated downward motion causes us to underestimate temporal separation judgments.
If observers interpret rapid stimulus sequences in light of an expectation regarding velocity, then it would be expected that not only temporal, but also spatial illusions would result. This indeed occurs in the tau effect, when the spatial separation between stimuli is constant and the temporal separation is varied. In this case, the observer decreases the judgment of spatial separation as temporal separation decreases, and vice versa. For example, when equally spaced light sources X, Y, and Z are flashed successively in the dark with a shorter time between X and Y than between Y and Z, X and Y are perceived to be closer together in space than are Y and Z. [2] Goldreich (2007) [6] linked the tau and kappa effects to the same underlying expectation regarding movement speed. He noted that, when stimuli move rapidly across space, "perception strikingly shrinks the intervening distance, and expands the elapsed time, between consecutive events". [6] Goldreich (2007) [6] termed these two fundamental perceptual distortions "perceptual length contraction" (tau effect) and "perceptual time dilation" (kappa effect) in analogy with the physical length contraction and time dilation of the theory of relativity. Perceptual length contraction and perceptual time dilation result from the same Bayesian observer model, one that expects stimuli to move slowly. [6] Analogously, in the theory of relativity, length contraction and time dilation both occur when a physical speed (the speed of light) cannot be exceeded.
An illusion is a distortion of the senses, which can reveal how the human brain normally organizes and interprets sensory stimulation. Although illusions distort our perception of reality, they are generally shared by most people.
A tactile illusion is an illusion that affects the sense of touch. Some tactile illusions require active touch, whereas others can be evoked passively. In recent years, a growing interest among perceptual researchers has led to the discovery of new tactile illusions and to the celebration of tactile illusions in the popular science press. Some tactile illusions are analogous to visual and auditory illusions, suggesting that these sensory systems may process information in similar ways; other tactile illusions don't have obvious visual or auditory analogs.
Figure–ground organization is a type of perceptual grouping that is a vital necessity for recognizing objects through vision. In Gestalt psychology it is known as identifying a figure from the background. For example, black words on a printed paper are seen as the "figure", and the white sheet as the "background".
Multisensory integration, also known as multimodal integration, is the study of how information from the different sensory modalities may be integrated by the nervous system. A coherent representation of objects combining modalities enables animals to have meaningful perceptual experiences. Indeed, multisensory integration is central to adaptive behavior because it allows animals to perceive a world of coherent perceptual entities. Multisensory integration also deals with how different sensory modalities interact with one another and alter each other's processing.
Sensory substitution is a change of the characteristics of one sensory modality into stimuli of another sensory modality.
Sensory processing is the process that organizes sensation from one's own body and the environment, thus making it possible to use the body effectively within the environment. Specifically, it deals with how the brain processes multiple sensory modality inputs, such as proprioception, vision, auditory system, tactile, olfactory, vestibular system, interoception, and taste into usable functional outputs.
The tau effect is a spatial perceptual illusion that arises when observers judge the distance between consecutive stimuli in a stimulus sequence. When the distance from one stimulus to the next is constant, and the time elapsed from one stimulus to the next is also constant, subjects tend to judge the distances, correctly, as equal. However, if the distance from one stimulus to the next is constant, but the time elapsed from one stimulus to the next is not constant, then subjects tend to misperceive the interval that has the shorter temporal interval as also having a shorter spatial interval. Thus, the tau effect reveals that stimulus timing affects the perception of stimulus spacing. Time is also a perceived quantity and subject to its own illusions; research indicates that in the tau effect, perceived stimulus spacing follows perceived (phenomenal) time rather than actual (physical) time.
A sensory cue is a statistic or signal that can be extracted from the sensory input by a perceiver, that indicates the state of some property of the world that the perceiver is interested in perceiving.
The flash lag illusion or flash-lag effect is a visual illusion wherein a flash and a moving object that appear in the same location are perceived to be displaced from one another. Several explanations for this simple illusion have been explored in the neuroscience literature.
The study of time perception is a field within psychology, cognitive linguistics and neuroscience that refers to the subjective experience, or sense, of time, which is measured by someone's own perception of the duration of the indefinite and unfolding of events. The perceived time interval between two successive events is referred to as perceived duration. Though directly experiencing or understanding another person's perception of time is not possible, such a perception can be objectively studied and inferred through a number of scientific experiments. Some temporal illusions help to expose the underlying neural mechanisms of time perception.
The cutaneous rabbit illusion is a tactile illusion evoked by tapping two or more separate regions of the skin in rapid succession. The illusion is most readily evoked on regions of the body surface that have relatively poor spatial acuity, such as the forearm. A rapid sequence of taps delivered first near the wrist and then near the elbow creates the sensation of sequential taps hopping up the arm from the wrist towards the elbow, although no physical stimulus was applied between the two actual stimulus locations. Similarly, stimuli delivered first near the elbow then near the wrist evoke the illusory perception of taps hopping from elbow towards wrist. The illusion was discovered by Frank Geldard and Carl Sherrick of Princeton University, in the early 1970s, and further characterized by Geldard (1982) and in many subsequent studies. Geldard and Sherrick likened the perception to that of a rabbit hopping along the skin, giving the phenomenon its name. While the rabbit illusion has been most extensively studied in the tactile domain, analogous sensory saltation illusions have been observed in audition and vision. The word "saltation" refers to the leaping or jumping nature of the percept.
Bayesian approaches to brain function investigate the capacity of the nervous system to operate in situations of uncertainty in a fashion that is close to the optimal prescribed by Bayesian statistics. This term is used in behavioural sciences and neuroscience and studies associated with this term often strive to explain the brain's cognitive abilities based on statistical principles. It is frequently assumed that the nervous system maintains internal probabilistic models that are updated by neural processing of sensory information using methods approximating those of Bayesian probability.
Extinction is a neurological disorder that impairs the ability to perceive multiple stimuli of the same type simultaneously. Extinction is usually caused by damage resulting in lesions on one side of the brain. Those who are affected by extinction have a lack of awareness in the contralesional side of space and a loss of exploratory search and other actions normally directed toward that side.
Perceptual learning is learning better perception skills such as differentiating two musical tones from one another or categorizations of spatial and temporal patterns relevant to real-world expertise. Examples of this may include reading, seeing relations among chess pieces, and knowing whether or not an X-ray image shows a tumor.
Cross modal plasticity is the adaptive reorganization of neurons to integrate the function of two or more sensory systems. Cross modal plasticity is a type of neuroplasticity and often occurs after sensory deprivation due to disease or brain damage. The reorganization of the neural network is greatest following long-term sensory deprivation, such as congenital blindness or pre-lingual deafness. In these instances, cross modal plasticity can strengthen other sensory systems to compensate for the lack of vision or hearing. This strengthening is due to new connections that are formed to brain cortices that no longer receive sensory input.
The oddball paradigm is an experimental design used within psychology research. Presentations of sequences of repetitive stimuli are infrequently interrupted by a deviant stimulus. The reaction of the participant to this "oddball" stimulus is recorded.
Chronostasis is a type of temporal illusion in which the first impression following the introduction of a new event or task-demand to the brain can appear to be extended in time. For example, chronostasis temporarily occurs when fixating on a target stimulus, immediately following a saccade. This elicits an overestimation in the temporal duration for which that target stimulus was perceived. This effect can extend apparent durations by up to half a second and is consistent with the idea that the visual system models events prior to perception.
Due to the effect of a spatial context or temporal context, the perceived orientation of a test line or grating pattern can appear tilted away from its physical orientation. The tilt illusion (TI) is the phenomenon that the perceived orientation of a test line or grating is altered by the presence of surrounding lines or grating with a different orientation. And the tilt aftereffect (TAE) is the phenomenon that the perceived orientation is changed after prolonged inspection of another oriented line or grating.
Multistable auditory perception is a cognitive phenomenon in which certain auditory stimuli can be perceived in multiple ways. While multistable perception has been most commonly studied in the visual domain, it also has been observed in the auditory and olfactory modalities. In the olfactory domain, different scents are piped to the two nostrils, while in the auditory domain, researchers often examine the effects of binaural sequences of pure tones. Generally speaking, multistable perception has three main characteristics: exclusivity, implying that the multiple perceptions cannot simultaneously occur; randomness, indicating that the duration of perceptual phases follows a random law, and inevitability, meaning that subjects are unable to completely block out one percept indefinitely.
Motion silencing is an illusion or perceptual phenomenon in which objects that are rapidly changing in a particular salient property seem to cease changing with motion. The illusion was first identified by Jordan Suchow and George Alvarez in the publication of their research on the topic.