Lebesgue's number lemma

Last updated

In topology, the Lebesgue covering lemma is a useful tool in the study of compact metric spaces.

Contents

Given an open cover of a compact metric space, a Lebesgue's number of the cover is a number such that every subset of having diameter less than is contained in some member of the cover.

The existence of Lebesgue's numbers for compact metric spaces is given by the Lebesgue's covering lemma:

If the metric space is compact and an open cover of is given, then the cover admits some Lebesgue's number .

The notion of Lebesgue's numbers itself is useful in other applications as well.

Proof

Direct Proof

Let be an open cover of . Since is compact we can extract a finite subcover . If any one of the 's equals then any will serve as a Lebesgue's number. Otherwise for each , let , note that is not empty, and define a function by

Since is continuous on a compact set, it attains a minimum . The key observation is that, since every is contained in some , the extreme value theorem shows . Now we can verify that this is the desired Lebesgue's number. If is a subset of of diameter less than , choose as any point in , then by definition of diameter, , where denotes the ball of radius centered at . Since there must exist at least one such that . But this means that and so, in particular, .

Proof by Contradiction

Suppose for contradiction that is sequentially compact, is an open cover of , and the Lebesgue number does not exist. That is: for all , there exists with such that there does not exist with .

This enables us to perform the following construction:


Note that for all , since . It is therefore possible by the axiom of choice to construct a sequence in which for each . Since is sequentially compact, there exists a subsequence (with ) that converges to .

Because is an open cover, there exists some such that . As is open, there exists with . Now we invoke the convergence of the subsequence : there exists such that implies .

Furthermore, there exists such that . Hence for all , we have implies .

Finally, define such that and . For all , notice that:

Hence by the triangle inequality, which implies that . This yields the desired contradiction.

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.

In set theory, a Woodin cardinal is a cardinal number such that for all functions , there exists a cardinal with and an elementary embedding from the Von Neumann universe into a transitive inner model with critical point and .

In mathematics, the support of a real-valued function is the subset of the function domain containing the elements which are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used widely in mathematical analysis.

In mathematics, the Henstock–Kurzweil integral or generalized Riemann integral or gauge integral – also known as the (narrow) Denjoy integral, Luzin integral or Perron integral, but not to be confused with the more general wide Denjoy integral – is one of a number of inequivalent definitions of the integral of a function. It is a generalization of the Riemann integral, and in some situations is more general than the Lebesgue integral. In particular, a function is Lebesgue integrable over a subset of if and only if the function and its absolute value are Henstock–Kurzweil integrable.

In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to the least value of a set of exponential random variables, one for each possible state it can move to, with the parameters determined by the current state.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

An -superprocess, , within mathematics probability theory is a stochastic process on that is usually constructed as a special limit of near-critical branching diffusions.

In mathematics, Racah polynomials are orthogonal polynomials named after Giulio Racah, as their orthogonality relations are equivalent to his orthogonality relations for Racah coefficients.

In algebraic geometry, Bloch's higher Chow groups, a generalization of Chow group, is a precursor and a basic example of motivic cohomology. It was introduced by Spencer Bloch and the basic theory has been developed by Bloch and Marc Levine.

Short integer solution (SIS) and ring-SIS problems are two average-case problems that are used in lattice-based cryptography constructions. Lattice-based cryptography began in 1996 from a seminal work by Miklós Ajtai who presented a family of one-way functions based on SIS problem. He showed that it is secure in an average case if the shortest vector problem (where for some constant ) is hard in a worst-case scenario.

In mathematics, a transformation of a sequence's generating function provides a method of converting the generating function for one sequence into a generating function enumerating another. These transformations typically involve integral formulas applied to a sequence generating function or weighted sums over the higher-order derivatives of these functions.

In complex geometry, the lemma is a mathematical lemma about the de Rham cohomology class of a complex differential form. The -lemma is a result of Hodge theory and the Kähler identities on a compact Kähler manifold. Sometimes it is also known as the -lemma, due to the use of a related operator , with the relation between the two operators being and so .

In complex geometry, the Kähler identities are a collection of identities between operators on a Kähler manifold relating the Dolbeault operators and their adjoints, contraction and wedge operators of the Kähler form, and the Laplacians of the Kähler metric. The Kähler identities combine with results of Hodge theory to produce a number of relations on de Rham and Dolbeault cohomology of compact Kähler manifolds, such as the Lefschetz hyperplane theorem, the hard Lefschetz theorem, the Hodge-Riemann bilinear relations, and the Hodge index theorem. They are also, again combined with Hodge theory, important in proving fundamental analytical results on Kähler manifolds, such as the -lemma, the Nakano inequalities, and the Kodaira vanishing theorem.

References