Lupinus mutabilis

Last updated

Lupinus mutabilis
Peruvian Field Lupines.jpg
Pisac, Peru
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Fabales
Family: Fabaceae
Subfamily: Faboideae
Genus: Lupinus
Subgenus: Lupinus subg. Platycarpos
Species:
L. mutabilis
Binomial name
Lupinus mutabilis
Synonyms

Lupinus cruckshankii Hook [1]

Lupinus mutabilis is a species of lupin grown in the Andes, mainly for its edible bean. Vernacular names include tarwi (in Quechua II, [2] pronounced tarhui), chocho, altramuz, Andean lupin, South American lupin, Peruvian field lupin, and pearl lupin. [3] Its nutrient-rich seeds are high in protein, as well as a good source for cooking oil. However, their bitter taste has made L. mutabilis relatively unknown outside the Andes, though modern technology makes it easier to remove the bitter alkaloids. [3] Like other species of lupin beans, it is expanding in use as a plant-based protein source. [4]

Contents

Origin and Dissemination

The origin of L. mutabilis has been identified in the Andean region of Ecuador, Peru and Bolivia. [5] In this area, the greatest genetic variability in the world was found. The plant has been domesticated for more than 1500 years, mostly because of its high protein content. [3]

Biology

L. mutabilis is an annual plant. The stem is hollow and highly branched. Plant height reaches from 0.5 to 2.8 metres (1 ft 8 in to 9 ft 2 in), depending on the environmental conditions and the genomic properties. Due to the high vegetative growth, species from northern South America are taller than species from the southern Andean region. [6] The genome contains 2n = 48 chromosomes and there is a high genomic variation, which leads to big differences in morphology. Several architectural types of L. mutabilis exist. Most common is the branching in V-form, this type has the highest biomass production. The basal branching type has the positive feature that its infructescence is at the same level. This species is preferably promoted because of its early ripening, stability and the homogeny seed quality. [6]

Morphology

Illustration Lupinus mutabilis.jpg
Illustration

The fruit is a 5 to 12 cm (2–5 in) long pod, depending on the amount of seed. One pod contains on average 2–3 seeds, but can have up to 9 seeds per pod. The thousand-seed weight (TSW) is around 200 g. Leaves are palmate and have a typical appearance: one leaf is divided in five to twelve leaflets, which have an oval or lanceolate form. The form is typical for Faboideaes. The corolla reaches 1 to 2 cm (3834 in) and contains five petals. Variation in coloration is high and reaches from white to purple. The white coloration is recessive to purple. L. mutabilis has a strong taproot reaching 3 metres (3 yd) length. Like all Leguminosae secondary roots build nodules containing bacteria for nitrogen fixation. [6]

Development

The growing cycle varies from 150 to 360 days, depending on the genotype, altitude and environmental conditions. Phenological phases are: emergence, first true leaf, formation of the raceme on the central stem, flowering, podding, pod ripening, and physiological maturity. [6]

Use

Human consumption

Tray with L. mutabilis seeds Chocho.jpg
Tray with L. mutabilis seeds

The bone-white seed contains more than 40% protein and 20% fat and has been used as a food by Andean people since ancient times, especially in soups, stews, salads and by itself mixed with boiled maize. Like other legumes, its protein is rich in the essential amino acid lysine. The distribution of essential fatty acids is about 28% linoleic acid (omega-6) and 2% linolenic acid (omega-3). It has a soft seed coat that makes for easy cooking. It may not have been more widely used because of its bitter taste, due to the alkaloid content. It contains unusually high amounts of sparteine, which make up nearly half of its alkaloid content. However, the alkaloids are water-soluble and can be removed by soaking the seeds for some days in water. [5] QAs are heat-stable toxins; cooking alone does not remove the alkaloids. [7] Like other species of lupin beans, chocho beans are expanding in use as a plant-based protein source in the world marketplace. [4] [8]

Compounds

Lupinus mutabilis seeds.jpg

L. mutabilis contains 42% of protein and 18% fat in average. [6] The high fat content has allowed commercial oil pressing. The protein digestibility and nutritional value are reportedly similar to those in soybeans.

Contents in the seed: [9]

IngredientAmount (%)Range
Protein42.637.7 – 49.7
Oil18.712.8 – 22.2
Fibre6.274.29 – 7.51
Ash3.693.10 – 4.24
Carbohydrates27.323.7 – 29.9
Alkaloids3.262.56 – 4.14

As with all Lupinus spp., L. mutabilis produces compounds called Bandas de Lupinus albus doce (BLADs). Also as with the rest of the genus it produces oligomers called BLAD-containing oligomers (BCOs). BCOs have a fungicidal action [10] with multiple MoAs. BCOs were previously classified by the Fungicide Resistance Action Committee (FRAC) into group M 12, but are as of 2021 in group BM 01 (short for "Biological, Multiple modes of action"). [11]

Wild populations of L. mutabilis contain toxic, bitter quinolizidine alkaloids. Cultivars also contain QAs but in much lower levels thanks to breeding programs begun in Germany in the 1930s. [12]

Green manure and soil improver

L. mutabilis is able to fix nitrogen from the air. Therefore, succeeding cultures can profit from 60 to 140 kg (130 to 310 lb) of nitrogen per hectare. Incorporation in the flowering stage leads to a higher quantity of organic matter and to an improved soil structure. [5]

Agricultural aspects

Soil and climate requirements

L. mutabilis is a crop for cool climates and exists mainly in valleys at high altitudes, such as the Andes at tropical latitudes. The crop can be grown at an altitude that ranges from 800 to 3,000 metres (2,625 to 9,843 ft). The crop withstands exceptional levels of drought. Mature plants are resistant to frost, whereas seedlings are sensitive to low temperatures. [3]

Cultivation technique

Sowing

In traditional farming practices minimum tilling is done before sowing. 100 to 120 kg/ha (89–107 lb/acre) of unselected seeds is sown.

Improved cultivation practices:

It is recommended to apply 80 kg (180 lb) phosphorus and 60 kg (130 lb) of potassium as fertilization before sowing. The sowing of 90 kg (200 lb) selected seeds in a distance of 60 to 80 cm (24–31 in), either by hand or by seed drill, follows. Plants germinate fast due to the high fat content in the seeds. [3]

Crop rotation aspects

Early varieties of L. mutabilis, with a growing period of about 150 days, can be cultivated in rotation with potatoes and cereals. Nematode disease of potato can be controlled by alkaloids when cultivated after L. mutabilis. [3]

Harvest

In traditional farming practices harvest occurs when plants have reached full maturity and the water content of seeds is between 8-12%. [6] From peasant plots average yield is about 500 to 1,000 kg (1,100–2,200 lb) per hectare under suitable conditions yield reaches up to 3,500 kg (7,700 lb) per hectare. [5]

Disease control

Alkaloids can act as a pesticide but breeding goals aim for a low alkaloid content. [12] Therefore, other disease control methods must be applied. Since L. mutabilis is a low-input crop, disease control mainly is done by phytosanitary methods. [6] A reduction of soil born saprophytes can be reached by removing dry straw from the field. Instead of green manure the plant residues can be used as fuel. Seed borne diseases can be reduced by translocation of seed production and by the use of certificated seed. [6] If seed production is done by the cultivator, diseases can be controlled by reducing the number of infected seed and by a permanent control of diseases in the field. Another possibility is to treat seed with a fungicide prior to sowing. [6]

Breeding goals

Since species with low alkaloid content are already available [12] a further step would be to make them more stable and low alkaloid content is inherited. Other breeding goals are tolerance to diseases and insects, improvement in yield, early maturing and synchronous ripening. Higher resistance could be reached by breeding a variety with high alkaloid content in leaves but not in the seeds. [3]

Related Research Articles

<span class="mw-page-title-main">Quinoa</span> Edible plant in the family Amaranthaceae

Quinoa is a flowering plant in the amaranth family. It is an herbaceous annual plant grown as a crop primarily for its edible seeds; the seeds are rich in protein, dietary fiber, B vitamins and dietary minerals in amounts greater than in many grains. Quinoa is not a grass but rather a pseudocereal botanically related to spinach and amaranth, and originated in the Andean region of northwestern South America. It was first used to feed livestock 5,200–7,000 years ago, and for human consumption 3,000–4,000 years ago in the Lake Titicaca basin of Peru and Bolivia.

<i>Lupinus polyphyllus</i> Species of legume

Lupinus polyphyllus, the large-leaved lupine, big-leaved lupine, many-leaved lupine, blue-pod lupine, or, primarily in cultivation, garden lupin, is a species of lupine (lupin) native to western North America from southern Alaska and British Columbia and western Wyoming, and south to Utah and California. It commonly grows along streams and creeks, preferring moist habitats.

<i>Lupinus</i> Genus of leguminous plants

Lupinus, commonly known as lupin, lupine, or regionally bluebonnet etc., is a genus of plants in the legume family Fabaceae. The genus includes over 199 species, with centers of diversity in North and South America. Smaller centers occur in North Africa and the Mediterranean. They are widely cultivated, both as a food source and as ornamental plants, but are invasive to some areas.

<i>Crotalaria</i> Genus of legumes

Crotalaria is a genus of flowering plants in the family Fabaceae commonly known as rattlepods. The genus includes over 700 species of herbaceous plants and shrubs. Africa is the continent with the majority of Crotalaria species, which are mainly found in damp grassland, especially in floodplains, depressions and along edges of swamps and rivers, but also in deciduous bush land, roadsides and fields. Some species of Crotalaria are grown as ornamentals. The common name rattlepod or rattlebox is derived from the fact that the seeds become loose in the pod as they mature, and rattle when the pod is shaken. The name derives from the Ancient Greek κρόταλον, meaning "castanet", and is the same root as the name for the rattlesnakes (Crotalus).

<i>Salvia hispanica</i> Species of flowering plant in the mint and sage family Lamiaceae

Salvia hispanica, one of several related species commonly known as chia, is a species of flowering plant in the mint family, Lamiaceae, native to central and southern Mexico and Guatemala. It is considered a pseudocereal, cultivated for its edible, hydrophilic chia seed, grown and commonly used as food in several countries of western South America, western Mexico, and the southwestern United States.

<i>Ullucus</i> Species of plant

Ullucus is a genus of flowering plants in the family Basellaceae, with one species, Ullucus tuberosus, a plant grown primarily as a root vegetable, secondarily as a leaf vegetable. The name ulluco is derived from the Quechua word ulluku, but depending on the region, it has many different names. These include illaco, melloco, chungua or ruba, olluco or papalisa, or ulluma.

<i>Vigna aconitifolia</i> Species of flowering plant

Vigna aconitifolia is a drought-resistant legume, commonly grown in arid and semi-arid regions of India. It is commonly called mat bean, moth bean, matki or dew bean. The pods, sprouts and protein-rich seeds of this crop are commonly consumed in India. Moth bean can be grown on many soil types, and can also act as a pasture legume.

<i>Chenopodium pallidicaule</i> Species of plant

Chenopodium pallidicaule, known as cañihua, canihua or cañahua and also kaniwa, is a species of goosefoot, similar in character and uses to the closely related quinoa(Chenopodium quinoa).

<i>Amaranthus caudatus</i> Species of flowering plant

Amaranthus caudatus is a species of annual flowering plant. It goes by common names such as love-lies-bleeding, pendant amaranth, tassel flower, velvet flower, foxtail amaranth, and quilete.

<span class="mw-page-title-main">Lupinine</span> Chemical compound

Lupinine is a quinolizidine alkaloid present in the genus Lupinus of the flowering plant family Fabaceae. The scientific literature contains many reports on the isolation and synthesis of this compound as well as a vast number of studies on its biosynthesis from its natural precursor, lysine. Studies have shown that lupinine hydrochloride is a mildly toxic acetylcholinesterase inhibitor and that lupinine has an inhibitory effect on acetylcholine receptors. The characteristically bitter taste of lupin beans, which come from the seeds of Lupinus plants, is attributable to the quinolizidine alkaloids which they contain, rendering them unsuitable for human and animal consumption unless handled properly. However, because lupin beans have potential nutritional value due to their high protein content, efforts have been made to reduce their alkaloid content through the development of "sweet" varieties of Lupinus.

<span class="mw-page-title-main">Lupin bean</span> Yellow legume seeds used as food

Lupin or lupini are the yellow legume seeds of the genus Lupinus. They are traditionally eaten as a pickled snack food, primarily in the Mediterranean basin, Latin America and North Africa. The most ancient evidence of lupin is from ancient Egypt, dating back to the 22nd century BCE. The bitter variety of the beans are high in alkaloids and are extremely bitter unless rinsed methodically. Low alkaloid cultivars called sweet lupins have been bred, and are increasingly planted.

<i>Lupinus albus</i> Species of edible plant

Lupinus albus, commonly known as the white lupin or field lupine, is a member of the genus Lupinus in the family Fabaceae. It is a traditional pulse cultivated in the Mediterranean region.

<i>Lupinus angustifolius</i> Species of legume

Lupinus angustifolius is a species of lupin known by many common names, including narrowleaf lupin, narrow-leaved lupin and blue lupin. It is native to Eurasia and northern Africa and naturalized in parts of Australia and North America. It has been cultivated for over 6000 years as a food crop for its edible legume seeds, as a fodder for livestock and for green manure.

<i>Colletotrichum acutatum</i> Species of fungus

Colletotrichum acutatum is a plant pathogen and endophyte. It is the organism that causes the most destructive fungal disease, anthracnose, of lupin species worldwide. It also causes the disease postbloom fruit drop on many varieties of citrus, especially Valencia and navel oranges in Florida.

<span class="mw-page-title-main">Napa cabbage</span> Subspecies of flowering plant

Napa cabbage is a type of Chinese cabbage originating near the Beijing region of China that is widely used in East Asian cuisine. Since the 20th century, it has also become a widespread crop in Europe, the Americas and Australia. In much of the world, it is referred to as "Chinese cabbage". In Australia it also is referred to as "wombok".

<i>Erythrina edulis</i> Species of tree

Erythrina edulis (basul) is a nitrogen fixing tree that is native to the Andean region from western Venezuela to southern Bolivia. Nowadays it is known in Venezuela as "frijol mompás", in Bolivia, Peru and Northwest Argentina as "psonay", "pajuro", "sachaporoto del basul" or "poroto del sacha", in Colombia as "chachafruto", "balú", "baluy" or "sachaporoto" and in Ecuador as "guato". Although it is widely known, it is not commonly cultivated. Future research is needed, especially in agroforestry. Basul is a legume and so it produces protein-rich beans covered in pods which can be used for human or animal nutrition. The leaves and branches can be used as fodder. Besides the agricultural aspects, Erythrina edulis can also be used as a fence plant.

<i>Pachyrhizus ahipa</i> Species of legume

Pachyrhizus ahipa, also called the ahipa or Andean yam bean, is a tuberous root-producing legume, which is mainly distributed in the Andean region.

<i>Lupinus <span style="font-style:normal;">subg.</span> Platycarpos</i> Subgenus of legumes

The genus Lupinus L. and, in particular, its North-American species, were divided by Sereno Watson (1873) into three parts: Lupinus, Platycarpos and Lupinnelus. Differences in habit and in the number of ovules were accepted as the basis for this classification. A majority of perennial and annual species from the American continent described by Watson were referred to Lupinus. To the Platycarpos section were attributed some annual species with two ovules in the ovary and two seeds in the pod. The section Lupinnelus consisted of one species, with axillary and solitary flowers, scarcely reflexed banner, and also with two ovules in the ovary.

<i>Neustanthus</i> Species of legume

Neustanthus is a monotypic genus of flowering plants belonging to the pea family Fabaceae and its tribe Phaseoleae. The only species is Neustanthus phaseoloides, called tropical kudzu. This species is a forage crop and cover crop used in the tropics. It is known as puero in Australia and tropical kudzu in most tropical regions.

<span class="mw-page-title-main">Quinolizidine alkaloids</span>

Quinolizidine alkaloids are natural products that have a quinolizidine structure; this includes the lupine alkaloids.

References

  1. "Lupinus mutabilis - names". Encyclopedia of Life . Retrieved 2020-08-23.
  2. Teofilo Laime Ajacopa (2007). Diccionario Bilingüe: Iskay simipi yuyayk’anch: Quechua – Castellano / Castellano – Quechua (PDF). La Paz, Bolivia.{{cite book}}: CS1 maint: location missing publisher (link)
  3. 1 2 3 4 5 6 7 Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. Washington, D.C.: National Academy Press. 1989. pp. 180–9. doi:10.17226/1398. ISBN   978-0-309-07461-2.
  4. 1 2 Poinski, Megan (2021-02-25). "Why chocho may be the next big plant-based protein". FoodDive. Retrieved 2021-02-27.
  5. 1 2 3 4 Neglected crops: 1492 from a different perspective (1994). Ed.: J.E. Hernándo Bermejo and J. León; publ. in collab. with the Botanical Garden of Córdoba (Spain)
  6. 1 2 3 4 5 6 7 8 9 Rainer Gross (1982). El cultivo y la utilización del tarwi: Lupinus mutabilis sweet. Rome: Organización de las Naciones Unidas para la Agricultura y la Alimentación. ISBN   978-92-5-301197-1.
  7. "Invisible KILLERS :: Health Focus: Toxins from Plants".
  8. "Strong Growth Predicted for Lupin Protein Market as Demand for Plant-Based Foods Increases". vegconomist. 2020-09-07. Retrieved 2021-02-27.
  9. 2.1.2. Composición química y valor nutricional de Lupinus mutabilis
  10. Gulisano, Agata; Alves, Sofia; Martins, João Neves; Trindade, Luisa M. (2019-10-30). "Genetics and Breeding of Lupinus mutabilis: An Emerging Protein Crop". Frontiers in Plant Science . Frontiers. 10: 1385. doi: 10.3389/fpls.2019.01385 . ISSN   1664-462X. PMC   6831545 . PMID   31737013. S2CID   204938901.
  11. FRAC (Fungicide Resistance Action Committee) (March 2021). "FRAC Code List ©*2021: Fungal control agents sorted by cross resistance pattern and mode of action (including coding for FRAC Groups on product labels)" (PDF). pp. 1–17. p. 16
  12. 1 2 3 Kaiser, N.; Douches, D.; Dhingra, A.; Glenn, K.; Herzig, Philip Reed; Stowe, Evan C.; Swarup, S. (2020). "The role of conventional plant breeding in ensuring safe levels of naturally occurring toxins in food crops". Trends in Food Science & Technology . 100: 51–66. doi: 10.1016/j.tifs.2020.03.042 . ISSN   0924-2244. S2CID   216391401.