General | |
---|---|
Designers | IBM |
First published | 1998 |
Certification | AES finalist |
Cipher detail | |
Key sizes | 128, 192, or 256 bits |
Block sizes | 128 bits |
Structure | Type-3 Feistel network [1] |
Rounds | 32 |
MARS is a block cipher that was IBM's submission to the Advanced Encryption Standard process. MARS was selected as an AES finalist in August 1999, after the AES2 conference in March 1999, where it was voted as the fifth and last finalist algorithm.
The MARS design team included Don Coppersmith, who had been involved in the creation of the previous Data Encryption Standard (DES) twenty years earlier. The project was specifically designed to resist future advances in cryptography by adopting a layered, compartmentalized approach.
IBM's official report stated that MARS and Serpent were the only two finalists to implement any form of safety net with regard to would-be advances in cryptographic mathematics. The Twofish team made a similar statement about its cipher. [2]
MARS has a 128-bit block size and a variable key size of between 128 and 448 bits (in 32-bit increments). Unlike most block ciphers, MARS has a heterogeneous structure: several rounds of a cryptographic core are "jacketed" by unkeyed mixing rounds, together with key whitening.
Subkeys with long runs of ones or zeroes may lead to efficient attacks on MARS. [3] The two least significant bits of round keys used in multiplication are always set to the value 1. Thus, there are always two inputs that are unchanged through the multiplication process regardless of the subkey, and two others which have fixed output regardless of the subkey. [3]
A meet-in-the-middle attack published in 2004 by John Kelsey and Bruce Schneier can break 21 out of 32 rounds of MARS. [4]
The Advanced Encryption Standard (AES), also known by its original name Rijndael, is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.
Blowfish is a symmetric-key block cipher, designed in 1993 by Bruce Schneier and included in many cipher suites and encryption products. Blowfish provides a good encryption rate in software, and no effective cryptanalysis of it has been found to date. However, the Advanced Encryption Standard (AES) now receives more attention, and Schneier recommends Twofish for modern applications.
In cryptography, a block cipher is a deterministic algorithm operating on fixed-length groups of bits, called blocks. They are specified elementary components in the design of many cryptographic protocols and are widely used to implement the encryption of large amounts of data, including data exchange protocols. It uses blocks as an unvarying transformation.
The Data Encryption Standard is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for applications, it has been highly influential in the advancement of cryptography.
In cryptography, the International Data Encryption Algorithm (IDEA), originally called Improved Proposed Encryption Standard (IPES), is a symmetric-key block cipher designed by James Massey of ETH Zurich and Xuejia Lai and was first described in 1991. The algorithm was intended as a replacement for the Data Encryption Standard (DES). IDEA is a minor revision of an earlier cipher Proposed Encryption Standard (PES).
The Advanced Encryption Standard (AES), the symmetric block cipher ratified as a standard by National Institute of Standards and Technology of the United States (NIST), was chosen using a process lasting from 1997 to 2000 that was markedly more open and transparent than its predecessor, the Data Encryption Standard (DES). This process won praise from the open cryptographic community, and helped to increase confidence in the security of the winning algorithm from those who were suspicious of backdoors in the predecessor, DES.
In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. A block cipher by itself is only suitable for the secure cryptographic transformation of one fixed-length group of bits called a block. A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform amounts of data larger than a block.
In cryptography, Lucifer was the name given to several of the earliest civilian block ciphers, developed by Horst Feistel and his colleagues at IBM. Lucifer was a direct precursor to the Data Encryption Standard. One version, alternatively named DTD-1, saw commercial use in the 1970s for electronic banking.
Serpent is a symmetric key block cipher that was a finalist in the Advanced Encryption Standard (AES) contest, where it was ranked second to Rijndael. Serpent was designed by Ross Anderson, Eli Biham, and Lars Knudsen.
The GOST block cipher (Magma), defined in the standard GOST 28147-89, is a Soviet and Russian government standard symmetric key block cipher with a block size of 64 bits. The original standard, published in 1989, did not give the cipher any name, but the most recent revision of the standard, GOST R 34.12-2015, specifies that it may be referred to as Magma. The GOST hash function is based on this cipher. The new standard also specifies a new 128-bit block cipher called Kuznyechik.
In cryptography, MAGENTA is a symmetric key block cipher developed by Michael Jacobson Jr. and Klaus Huber for Deutsche Telekom. The name MAGENTA is an acronym for Multifunctional Algorithm for General-purpose Encryption and Network Telecommunication Applications. The cipher was submitted to the Advanced Encryption Standard process, but did not advance beyond the first round; cryptographic weaknesses were discovered and it was found to be one of the slower ciphers submitted.
In cryptography, Khufu and Khafre are two block ciphers designed by Ralph Merkle in 1989 while working at Xerox's Palo Alto Research Center. Along with Snefru, a cryptographic hash function, the ciphers were named after the Egyptian Pharaohs Khufu, Khafre and Sneferu.
In cryptography, DEAL is a symmetric block cipher derived from the Data Encryption Standard (DES). The design was proposed in a report by Lars Knudsen in 1998, and was submitted to the AES contest by Richard Outerbridge.
In cryptography, MacGuffin is a block cipher created in 1994 by Bruce Schneier and Matt Blaze at a Fast Software Encryption workshop. It was intended as a catalyst for analysis of a new cipher structure, known as Generalized Unbalanced Feistel Networks (GUFNs). The cryptanalysis proceeded very quickly, so quickly that the cipher was broken at the same workshop by Vincent Rijmen and Bart Preneel.
In cryptography, NewDES is a symmetric key block cipher. It was created in 1984–1985 by Robert Scott as a potential DES replacement.
In cryptography, FROG is a block cipher authored by Georgoudis, Leroux and Chaves. The algorithm can work with any block size between 8 and 128 bytes, and supports key sizes between 5 and 125 bytes. The algorithm consists of 8 rounds and has a very complicated key schedule.
In cryptography, a related-key attack is any form of cryptanalysis where the attacker can observe the operation of a cipher under several different keys whose values are initially unknown, but where some mathematical relationship connecting the keys is known to the attacker. For example, the attacker might know that the last 80 bits of the keys are always the same, even though they don't know, at first, what the bits are. This appears, at first glance, to be an unrealistic model; it would certainly be unlikely that an attacker could persuade a human cryptographer to encrypt plaintexts under numerous secret keys related in some way.
The Hasty Pudding cipher (HPC) is a variable-block-size block cipher designed by Richard Schroeppel, which was an unsuccessful candidate in the competition for selecting the U.S. Advanced Encryption Standard (AES). It has a number of unusual properties for a block cipher: its input block size and key length are variable, and it includes an additional input parameter called the "spice" for use as a secondary, non-secret key. The Hasty Pudding cipher was the only AES candidate designed exclusively by U.S. cryptographers.
The following outline is provided as an overview of and topical guide to cryptography:
In cryptography, Twofish is a symmetric key block cipher with a block size of 128 bits and key sizes up to 256 bits. It was one of the five finalists of the Advanced Encryption Standard contest, but it was not selected for standardization. Twofish is related to the earlier block cipher Blowfish.