Mach's principle

Last updated

In theoretical physics, particularly in discussions of gravitation theories, Mach's principle (or Mach's conjecture [1] ) is the name given by Albert Einstein to an imprecise hypothesis often credited to the physicist and philosopher Ernst Mach. The hypothesis attempted to explain how rotating objects, such as gyroscopes and spinning celestial bodies, maintain a frame of reference.

Contents

The proposition is that the existence of absolute rotation (the distinction of local inertial frames vs. rotating reference frames) is determined by the large-scale distribution of matter, as exemplified by this anecdote: [2]

You are standing in a field looking at the stars. Your arms are resting freely at your side, and you see that the distant stars are not moving. Now start spinning. The stars are whirling around you and your arms are pulled away from your body. Why should your arms be pulled away when the stars are whirling? Why should they be dangling freely when the stars don't move?

Mach's principle says that this is not a coincidence—that there is a physical law that relates the motion of the distant stars to the local inertial frame. If you see all the stars whirling around you, Mach suggests that there is some physical law which would make it so you would feel a centrifugal force. There are a number of rival formulations of the principle, often stated in vague ways like "mass out there influences inertia here". A very general statement of Mach's principle is "local physical laws are determined by the large-scale structure of the universe". [3]

Mach's concept was a guiding factor in Einstein's development of the general theory of relativity. Einstein realized that the overall distribution of matter would determine the metric tensor which indicates which frame is stationary with respect to rotation. Frame-dragging and conservation of gravitational angular momentum makes this into a true statement in the general theory in certain solutions. But because the principle is so vague, many distinct statements have been made which would qualify as a Mach principle, some of which are false. The Gödel rotating universe is a solution of the field equations that is designed to disobey Mach's principle in the worst possible way. In this example, the distant stars seem to be revolving faster and faster as one moves further away. This example does not completely settle the question of the physical relevance of the principle because it has closed timelike curves.

History

Mach put forth the idea in his book The Science of Mechanics (1883 in German, 1893 in English). Before Mach's time, the basic idea also appears in the writings of George Berkeley. [4] After Mach, the book Absolute or Relative Motion? (1896) by Benedict Friedlaender and his brother Immanuel contained ideas similar to Mach's principle.[ page needed ]

Einstein's use of the principle

There is a fundamental issue in relativity theory: if all motion is relative, how can we measure the inertia of a body? We must measure the inertia with respect to something else. But what if we imagine a particle completely on its own in the universe? We might hope to still have some notion of its state of motion. Mach's principle is sometimes interpreted as the statement that such a particle's state of motion has no meaning in that case.

In Mach's words, the principle is embodied as follows: [5]

[The] investigator must feel the need of... knowledge of the immediate connections, say, of the masses of the universe. There will hover before him as an ideal insight into the principles of the whole matter, from which accelerated and inertial motions will result in the same way.

Albert Einstein seemed to view Mach's principle as something along the lines of: [6]

...inertia originates in a kind of interaction between bodies...

In this sense, at least some of Mach's principles are related to philosophical holism. Mach's suggestion can be taken as the injunction that gravitation theories should be relational theories. Einstein brought the principle into mainstream physics while working on general relativity. Indeed, it was Einstein who first coined the phrase Mach's principle. There is much debate as to whether Mach really intended to suggest a new physical law since he never states it explicitly.

The writing in which Einstein found inspiration was Mach's book The Science of Mechanics (1883, tr. 1893), where the philosopher criticized Newton's idea of absolute space, in particular the argument that Newton gave sustaining the existence of an advantaged reference system: what is commonly called "Newton's bucket argument".

In his Philosophiae Naturalis Principia Mathematica , Newton tried to demonstrate that one can always decide if one is rotating with respect to the absolute space, measuring the apparent forces that arise only when an absolute rotation is performed. If a bucket is filled with water, and made to rotate, initially the water remains still, but then, gradually, the walls of the vessel communicate their motion to the water, making it curve and climb up the borders of the bucket, because of the centrifugal forces produced by the rotation. This experiment demonstrates that the centrifugal forces arise only when the water is in rotation with respect to the absolute space (represented here by the earth's reference frame, or better, the distant stars) instead, when the bucket was rotating with respect to the water no centrifugal forces were produced, this indicating that the latter was still with respect to the absolute space.

Mach, in his book, says that the bucket experiment only demonstrates that when the water is in rotation with respect to the bucket no centrifugal forces are produced, and that we cannot know how the water would behave if in the experiment the bucket's walls were increased in depth and width until they became leagues big. In Mach's idea this concept of absolute motion should be substituted with a total relativism in which every motion, uniform or accelerated, has sense only in reference to other bodies (i.e., one cannot simply say that the water is rotating, but must specify if it's rotating with respect to the vessel or to the earth). In this view, the apparent forces that seem to permit discrimination between relative and "absolute" motions should only be considered as an effect of the particular asymmetry that there is in our reference system between the bodies which we consider in motion, that are small (like buckets), and the bodies that we believe are still (the earth and distant stars), that are overwhelmingly bigger and heavier than the former.

This same thought had been expressed by the philosopher George Berkeley in his De Motu . It is then not clear, in the passages from Mach just mentioned, if the philosopher intended to formulate a new kind of physical action between heavy bodies. This physical mechanism should determine the inertia of bodies, in a way that the heavy and distant bodies of our universe should contribute the most to the inertial forces. More likely, Mach only suggested a mere "redescription of motion in space as experiences that do not invoke the term space". [7] What is certain is that Einstein interpreted Mach's passage in the former way, originating a long-lasting debate.

Most physicists believe Mach's principle was never developed into a quantitative physical theory that would explain a mechanism by which the stars can have such an effect. Mach himself never made his principle exactly clear. [7] :9–57 Although Einstein was intrigued and inspired by Mach's principle, Einstein's formulation of the principle is not a fundamental assumption of general relativity, although the principle of equivalence of gravitational and inertial mass is most certainly fundamental.

Mach's principle in general relativity

Because intuitive notions of distance and time no longer apply, what exactly is meant by "Mach's principle" in general relativity is even less clear than in Newtonian physics and at least 21 formulations of Mach's principle are possible, some being considered more strongly Machian than others. [7] :530 A relatively weak formulation is the assertion that the motion of matter in one place should affect which frames are inertial in another.

Einstein, before completing his development of the general theory of relativity, found an effect which he interpreted as being evidence of Mach's principle. We assume a fixed background for conceptual simplicity, construct a large spherical shell of mass, and set it spinning in that background. The reference frame in the interior of this shell will precess with respect to the fixed background. This effect is known as the Lense–Thirring effect. Einstein was so satisfied with this manifestation of Mach's principle that he wrote a letter to Mach expressing this:

it... turns out that inertia originates in a kind of interaction between bodies, quite in the sense of your considerations on Newton's pail experiment... If one rotates [a heavy shell of matter] relative to the fixed stars about an axis going through its center, a Coriolis force arises in the interior of the shell; that is, the plane of a Foucault pendulum is dragged around (with a practically unmeasurably small angular velocity). [6]

The Lense–Thirring effect certainly satisfies the very basic and broad notion that "matter there influences inertia here". [8] The plane of the pendulum would not be dragged around if the shell of matter were not present, or if it were not spinning. As for the statement that "inertia originates in a kind of interaction between bodies", this, too, could be interpreted as true in the context of the effect.

More fundamental to the problem, however, is the very existence of a fixed background, which Einstein describes as "the fixed stars". Modern relativists see the imprints of Mach's principle in the initial-value problem. Essentially, we humans seem to wish to separate spacetime into slices of constant time. When we do this, Einstein's equations can be decomposed into one set of equations, which must be satisfied on each slice, and another set, which describe how to move between slices. The equations for an individual slice are elliptic partial differential equations. In general, this means that only part of the geometry of the slice can be given by the scientist, while the geometry everywhere else will then be dictated by Einstein's equations on the slice.[ clarification needed ]

In the context of an asymptotically flat spacetime, the boundary conditions are given at infinity. Heuristically, the boundary conditions for an asymptotically flat universe define a frame with respect to which inertia has meaning. By performing a Lorentz transformation on the distant universe, of course, this inertia can also be transformed[ clarification needed ].

A stronger form of Mach's principle applies in Wheeler–Mach–Einstein spacetimes, which require spacetime to be spatially compact and globally hyperbolic. In such universes Mach's principle can be stated as the distribution of matter and field energy-momentum (and possibly other information) at a particular moment in the universe determines the inertial frame at each point in the universe (where "a particular moment in the universe" refers to a chosen Cauchy surface). [7] :188–207

There have been other attempts to formulate a theory that is more fully Machian, such as the Brans–Dicke theory and the Hoyle–Narlikar theory of gravity, but most physicists argue that none have been fully successful. At an exit poll of experts, held in Tübingen in 1993, when asked the question "Is general relativity perfectly Machian?", 3 respondents replied "yes", and 22 replied "no". To the question "Is general relativity with appropriate boundary conditions of closure of some kind very Machian?" the result was 14 "yes" and 7 "no". [7] :106

However, Einstein was convinced that a valid theory of gravity would necessarily have to include the relativity of inertia:

So strongly did Einstein believe at that time in the relativity of inertia that in 1918 he stated as being on an equal footing three principles on which a satisfactory theory of gravitation should rest:

  1. The principle of relativity as expressed by general covariance.
  2. The principle of equivalence.
  3. Mach's principle (the first time this term entered the literature): … that the gµν are completely determined by the mass of bodies, more generally by Tµν.

In 1922, Einstein noted that others were satisfied to proceed without this [third] criterion and added, "This contentedness will appear incomprehensible to a later generation however."

It must be said that, as far as I can see, to this day, Mach's principle has not brought physics decisively farther. It must also be said that the origin of inertia is and remains the most obscure subject in the theory of particles and fields. Mach's principle may therefore have a future – but not without the quantum theory.

Abraham Pais, in Subtle is the Lord: the Science and the Life of Albert Einstein (Oxford University Press, 2005), pp. 287–288.

Inertial induction

In 1953, in order to express Mach's Principle in quantitative terms, the Cambridge University physicist Dennis W. Sciama proposed the addition of an acceleration dependent term to the Newtonian gravitation equation. [9] Sciama's acceleration dependent term was where r is the distance between the particles, G is the gravitational constant, a is the relative acceleration and c represents the speed of light in vacuum. Sciama referred to the effect of the acceleration dependent term as Inertial Induction.

Variations in the statement of the principle

The broad notion that "mass there influences inertia here" has been expressed in several forms. Hermann Bondi and Joseph Samuel have listed eleven distinct statements that can be called Mach principles, labelled Mach0 through Mach10. [10] Though their list is not necessarily exhaustive, it does give a flavor for the variety possible.

See also

Related Research Articles

Isaac Newton's rotating bucket argument was designed to demonstrate that true rotational motion cannot be defined as the relative rotation of the body with respect to the immediately surrounding bodies. It is one of five arguments from the "properties, causes, and effects" of "true motion and rest" that support his contention that, in general, true motion and rest cannot be defined as special instances of motion or rest relative to other bodies, but instead can be defined only by reference to absolute space. Alternatively, these experiments provide an operational definition of what is meant by "absolute rotation", and do not pretend to address the question of "rotation relative to what?" General relativity dispenses with absolute space and with physics whose cause is external to the system, with the concept of geodesics of spacetime.

In classical physics and special relativity, an inertial frame of reference is a frame of reference not undergoing any acceleration. It is a frame in which an isolated physical object—an object with zero net force acting on it—is perceived to move with a constant velocity or, equivalently, it is a frame of reference in which Newton's first law of motion holds. All inertial frames are in a state of constant, rectilinear motion with respect to one another; in other words, an accelerometer moving with any of them would detect zero acceleration.

<span class="mw-page-title-main">Theory of relativity</span> Two interrelated physics theories by Albert Einstein

The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to the forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

<span class="mw-page-title-main">Gravity</span> Attraction of masses and energy

In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction which causes mutual attraction between all things that have mass. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.

In physics, the principle of relativity is the requirement that the equations describing the laws of physics have the same form in all admissible frames of reference.

Philosophy of space and time is the branch of philosophy concerned with the issues surrounding the ontology and epistemology of space and time. While such ideas have been central to philosophy from its inception, the philosophy of space and time was both an inspiration for and a central aspect of early analytic philosophy. The subject focuses on a number of basic issues, including whether time and space exist independently of the mind, whether they exist independently of one another, what accounts for time's apparently unidirectional flow, whether times other than the present moment exist, and questions about the nature of identity.

<span class="mw-page-title-main">Absolute space and time</span> Theoretical foundation of Newtonian mechanics

Absolute space and time is a concept in physics and philosophy about the properties of the universe. In physics, absolute space and time may be a preferred frame.

<span class="mw-page-title-main">Introduction to general relativity</span> Theory of gravity by Albert Einstein

General relativity is a theory of gravitation developed by Albert Einstein between 1907 and 1915. The theory of general relativity says that the observed gravitational effect between masses results from their warping of spacetime.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

In 19th century physics, there were several situations in which the motion of matter might be said to drag light. This aether drag hypothesis was an attempt by classical physics to explain stellar aberration and the Fizeau experiment, but was discarded when Albert Einstein introduced his theory of relativity. Despite this, the expression light-dragging has remained in use somewhat, as discussed on this page.

In theoretical physics a Coriolis field is one of the apparent gravitational fields felt by a rotating or forcibly-accelerated body, together with the centrifugal field and the Euler field.

In theoretical physics, a preferred frame or privileged frame is usually a special hypothetical frame of reference in which the laws of physics might appear to be identifiably different (simpler) from those in other frames.

A non-inertial reference frame is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion are the same in all inertial frames, in non-inertial frames, they vary from frame to frame depending on the acceleration.

<span class="mw-page-title-main">Geodetic effect</span> Precession of satellite orbits due to a celestial bodys presence affecting spacetime

The geodetic effect represents the effect of the curvature of spacetime, predicted by general relativity, on a vector carried along with an orbiting body. For example, the vector could be the angular momentum of a gyroscope orbiting the Earth, as carried out by the Gravity Probe B experiment. The geodetic effect was first predicted by Willem de Sitter in 1916, who provided relativistic corrections to the Earth–Moon system's motion. De Sitter's work was extended in 1918 by Jan Schouten and in 1920 by Adriaan Fokker. It can also be applied to a particular secular precession of astronomical orbits, equivalent to the rotation of the Laplace–Runge–Lenz vector.

In general relativity, Lense–Thirring precession or the Lense–Thirring effect is a relativistic correction to the precession of a gyroscope near a large rotating mass such as the Earth. It is a gravitomagnetic frame-dragging effect. It is a prediction of general relativity consisting of secular precessions of the longitude of the ascending node and the argument of pericenter of a test particle freely orbiting a central spinning mass endowed with angular momentum .

<span class="mw-page-title-main">Centrifugal force</span> Type of inertial force

Centrifugal force is an inertial force in Newtonian mechanics that appears to act on all objects when viewed in a rotating frame of reference. It is directed radially away from the axis of rotation. The magnitude of centrifugal force F on an object of mass m at the distance r from the axis of rotation of a frame of reference rotating with angular velocity ω is:

Isaac Newton's rotating spheres argument attempts to demonstrate that true rotational motion can be defined by observing the tension in the string joining two identical spheres. The basis of the argument is that all observers make two observations: the tension in the string joining the bodies and the rate of rotation of the spheres. Only for the truly non-rotating observer will the tension in the string be explained using only the observed rate of rotation. For all other observers a "correction" is required that accounts for the tension calculated being different from the one expected using the observed rate of rotation. It is one of five arguments from the "properties, causes, and effects" of true motion and rest that support his contention that, in general, true motion and rest cannot be defined as special instances of motion or rest relative to other bodies, but instead can be defined only by reference to absolute space. Alternatively, these experiments provide an operational definition of what is meant by "absolute rotation", and do not pretend to address the question of "rotation relative to what?" General relativity dispenses with absolute space and with physics whose cause is external to the system, with the concept of geodesics of spacetime.

<span class="mw-page-title-main">Absolute rotation</span> Rotation independent of any external reference

In physics, the concept of absolute rotation—rotation independent of any external reference—is a topic of debate about relativity, cosmology, and the nature of physical laws.

In physics, the history of centrifugal and centripetal forces illustrates a long and complex evolution of thought about the nature of forces, relativity, and the nature of physical laws.

Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses causing that field may be non-static ⁠— rotating, for instance. More generally, the subject that deals with the effects caused by mass–energy currents is known as gravitoelectromagnetism, which is analogous to the magnetism of classical electromagnetism.

References

  1. Hans Christian Von Bayer, The Fermi Solution: Essays on Science, Courier Dover Publications (2001), ISBN   0-486-41707-7, page 79.
  2. Steven, Weinberg (1972). Gravitation and Cosmology . USA: Wiley. pp.  17. ISBN   978-0-471-92567-5.
  3. Stephen W. Hawking & George Francis Rayner Ellis (1973). The Large Scale Structure of Space–Time. Cambridge University Press. p. 1. ISBN   978-0-521-09906-6.
  4. G. Berkeley (1726). The Principles of Human Knowledge. See paragraphs 111–117, 1710.
  5. Mach, Ernst (1960). The Science of Mechanics; a Critical and Historical Account of its Development. LaSalle, IL: Open Court Pub. Co. LCCN   60010179. This is a reprint of the English translation by Thomas H. MCormack (first published in 1906) with a new introduction by Karl Menger
  6. 1 2 A. Einstein, letter to Ernst Mach, Zurich, 25 June 1913, in Misner, Charles; Thorne, Kip S. & Wheeler, John Archibald (1973). Gravitation. San Francisco: W. H. Freeman. ISBN   978-0-7167-0344-0.
  7. 1 2 3 4 5 Julian B. Barbour; Herbert Pfister, eds. (1995). Mach's principle: from Newton's bucket to quantum gravity. Volume 6 of Einstein Studies. Boston: Birkhäuser. ISBN   978-3-7643-3823-7.
  8. Bondi, Hermann & Samuel, Joseph (July 4, 1996). "The Lense–Thirring Effect and Mach's Principle". Physics Letters A. 228 (3): 121. arXiv: gr-qc/9607009 . Bibcode:1997PhLA..228..121B. doi:10.1016/S0375-9601(97)00117-5. S2CID   15625102. A useful review explaining the multiplicity of "Mach principles" which have been invoked in the research literature (and elsewhere).
  9. Sciama, D. W. (1953-02-01). "On the Origin of Inertia". Monthly Notices of the Royal Astronomical Society. 113 (1): 34–42. Bibcode:1953MNRAS.113...34S. doi: 10.1093/mnras/113.1.34 . ISSN   0035-8711.
  10. Bondi, Hermann; Samuel, Joseph (July 4, 1996). "The Lense–Thirring Effect and Mach's Principle". Physics Letters A. 228 (3): 121–126. arXiv: gr-qc/9607009 . Bibcode:1997PhLA..228..121B. doi:10.1016/S0375-9601(97)00117-5. S2CID   15625102. A useful review explaining the multiplicity of "Mach principles", which have been invoked in the research literature (and elsewhere).

Further reading