Marsupionta

Last updated

Marsupionta
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Synapsida
Clade: Mammaliaformes
Class: Mammalia
Subclass: Marsupionta
Gregory, 1947
Subgroups

Marsupionta is a hypothetical clade of mammals containing marsupials and monotremes, but not the placentals. This hypothesis is contrary to the conventional view that marsupials and placentals form a clade (Theria) that excludes monotremes. Marsupionta was proposed in 1947 by the American zoologist William King Gregory [1] and has since been the subject of multiple studies. [2] [3] [4]

Contents

Evidence

Morphological evidence

The majority of researchers prefer the Theria hypothesis, in which marsupials and placentals form a clade to the exclusion of monotremes. Theria is characterised by a number of common derived characteristics (synapomorphies), which include among others, viviparity (the birth of live young), the presence of teats, and several features in the skull and shoulder girdle structures.

Potential synapomorphies of Marsupionta exist only in the epipubic (pouch) bones. The two epipubic bones that protrude from the pelvis bone, are present in both monotremes and marsupials, but are missing in placentals. However, some primitive mammals, as well as fossil ancestors of the Cretaceous higher mammals also exhibit these bones. It can therefore be assumed that the epipubic bones were an ancestral trait of mammals that has been reduced in today's placentals, and that no morphological evidence exists for the Marsupionta hypothesis.

Molecular evidence

Genetic findings regarding the correct classification scheme for marsupials and monotremes are contradictory. Comparisons of mitochondrial DNA support the Marsupionta hypothesis, [5] while genome sequencing [6] speaks for the Theria hypothesis. Other studies do not come to a clear conclusion.

Related Research Articles

<span class="mw-page-title-main">Marsupial</span> Infraclass of mammals in the clade Metatheria

Marsupials are a diverse group of mammals belonging to the infraclass Marsupialia. They are natively found in Australasia, Wallacea, and the Americas. One of the defining features of marsupials is their unique reproductive strategy, where the young are born in a relatively undeveloped state and then nurtured within a pouch on their mother's abdomen.

<span class="mw-page-title-main">Placentalia</span> Infraclass of mammals in the clade Eutheria

Placental mammals are one of the three extant subdivisions of the class Mammalia, the other two being Monotremata and Marsupialia. Placentalia contains the vast majority of extant mammals, which are partly distinguished from monotremes and marsupials in that the fetus is carried in the uterus of its mother to a relatively late stage of development. The name is something of a misnomer considering that marsupials also nourish their fetuses via a placenta, though for a relatively briefer period, giving birth to less developed young which are then nurtured for a period inside the mother's pouch. Placentalia represents the only living group within Eutheria, which contains all mammals more closely related to placentals than to marsupials.

<i>Eomaia</i> Extinct genus of mammals

Eomaia is a genus of extinct fossil mammals containing the single species Eomaia scansoria, discovered in rocks that were found in the Yixian Formation, Liaoning Province, China, and dated to the Barremian Age of the Lower Cretaceous about 125 million years ago. The single fossil specimen of this species is 10 centimetres (3.9 in) in length and virtually complete. An estimate of the body weight is 20–25 grams (0.71–0.88 oz). It is exceptionally well-preserved for a 125-million-year-old specimen. Although the fossil's skull is squashed flat, its teeth, tiny foot bones, cartilages and even its fur are visible.

<span class="mw-page-title-main">Eutheria</span> Clade of mammals in the subclass Theria

Eutheria, also called Pan-Placentalia, is the clade consisting of placental mammals and all therian mammals that are more closely related to placentals than to marsupials.

<span class="mw-page-title-main">Metatheria</span> Clade of marsupials and close relatives

Metatheria is a mammalian clade that includes all mammals more closely related to marsupials than to placentals. First proposed by Thomas Henry Huxley in 1880, it is a more inclusive group than the marsupials; it contains all marsupials as well as many extinct non-marsupial relatives. It is one of two groups placed in the clade Theria alongside Eutheria, which contains the placentals.

<span class="mw-page-title-main">Marsupial mole</span> Genus of marsupials

Marsupial moles, the Notoryctidae family, are two species of highly specialized marsupial mammals that are found in the Australian interior. They are small fossorial marsupials that anatomically converge on fossorial placental mammals, such as extant golden moles (Chrysochloridae) and extinct epoicotheres (Pholidota). The species are:

<span class="mw-page-title-main">Prototheria</span> Subclass of mammalia

Prototheria is an obsolete subclass of mammals which includes the living Monotremata and to which a variety of extinct groups, including Morganucodonta, Docodonta, Triconodonta and Multituberculata, have also been assigned. It is today no longer considered a valid grouping, but rather a paraphyletic evolutionary grade of basal mammals and mammaliaform cynodonts.

<span class="mw-page-title-main">Theria</span> Subclass of mammals in the clade Theriiformes

Theria is a subclass of mammals amongst the Theriiformes. Theria includes the eutherians and the metatherians but excludes the egg-laying monotremes and various extinct mammals evolving prior to the common ancestor of placentals and marsupials.

<span class="mw-page-title-main">Euarchontoglires</span> Superorder of mammals

Euarchontoglires, synonymous with Supraprimates, is a clade and a superorder of mammals, the living members of which belong to one of the five following groups: rodents, lagomorphs, treeshrews, primates, and colugos.

<span class="mw-page-title-main">Euarchonta</span> Mammal grandorder containing treeshrews, colugos, and primates

The Euarchonta are a proposed grandorder of mammals: the order Scandentia (treeshrews), and its sister Primatomorpha mirorder, containing the Dermoptera or colugos and the primates.

<span class="mw-page-title-main">Tribosphenida</span> Infralegion of mammals

Tribosphenida is a group (infralegion) of mammals that includes the ancestor of Hypomylos, Aegialodontia and Theria. It belongs to the group Zatheria. The current definition of Tribosphenida is more or less synonymous with Boreosphenida.

<span class="mw-page-title-main">Laurasiatheria</span> Clade of mammals

Laurasiatheria is a superorder of placental mammals that groups together true insectivores (eulipotyphlans), bats (chiropterans), carnivorans, pangolins (pholidotes), even-toed ungulates (artiodactyls), odd-toed ungulates (perissodactyls), and all their extinct relatives. From systematics and phylogenetic perspectives, it is subdivided into order Eulipotyphla and clade Scrotifera. It is a sister group to Euarchontoglires with which it forms the magnorder Boreoeutheria. Laurasiatheria was discovered on the basis of the similar gene sequences shared by the mammals belonging to it; no anatomical features have yet been found that unite the group, although a few have been suggested such as a small coracoid process, a simplified hindgut, high intelligence, lack of grasping hands and allantoic vessels that are large to moderate in size. The Laurasiatheria clade is based on DNA sequence analyses and retrotransposon presence/absence data. The superorder originated on the northern supercontinent of Laurasia, after it split from Gondwana when Pangaea broke up. Its last common ancestor is supposed to have lived between ca. 76 to 90 million years ago.

<i>Akidolestes</i> Extinct genus of mammals

Akidolestes is an extinct genus of mammals of the family Spalacotheriidae, a group of mammals related to therians.

<span class="mw-page-title-main">Mammaliaformes</span> Clade of mammals and extinct relatives

Mammaliaformes is a clade that contains the crown group mammals and their closest extinct relatives; the group radiated from earlier probainognathian cynodonts. It is defined as the clade originating from the most recent common ancestor of Morganucodonta and the crown group mammals; the latter is the clade originating with the most recent common ancestor of extant Monotremata, Marsupialia, and Placentalia. Besides Morganucodonta and the crown group mammals, Mammaliaformes includes Docodonta and Hadrocodium.

<span class="mw-page-title-main">Ferungulata</span> Clade of mammals comprising carnivorans, pangolins, artiodactyls and perissodactyls

Ferungulata is a grandorder of placental mammals that groups together mirorder Ferae and clade Pan-Euungulata. It has existed in two guises, a traditional one based on morphological analysis and a revised one taking into account more recent molecular analyses. The Fereungulata is a sister group to the order Chiroptera (bats) and together they make clade Scrotifera.

<span class="mw-page-title-main">Australosphenida</span> Subclass of mammals

The Australosphenida are a clade of mammals, containing mammals with tribosphenic molars, known from the Jurassic to Mid-Cretaceous of Gondwana. Although they have often been suggested to have acquired tribosphenic molars independently from those of Tribosphenida, this has been disputed. Fossils of australosphenidans have been found from the Jurassic of Madagascar and Argentina, and Cretaceous of Australia and Argentina. Monotremes have also been considered a part of this group in many studies, but this is also disputed.

<span class="mw-page-title-main">Evolution of mammals</span> Derivation of mammals from a synapsid precursor, and the adaptive radiation of mammal species

The evolution of mammals has passed through many stages since the first appearance of their synapsid ancestors in the Pennsylvanian sub-period of the late Carboniferous period. By the mid-Triassic, there were many synapsid species that looked like mammals. The lineage leading to today's mammals split up in the Jurassic; synapsids from this period include Dryolestes, more closely related to extant placentals and marsupials than to monotremes, as well as Ambondro, more closely related to monotremes. Later on, the eutherian and metatherian lineages separated; the metatherians are the animals more closely related to the marsupials, while the eutherians are those more closely related to the placentals. Since Juramaia, the earliest known eutherian, lived 160 million years ago in the Jurassic, this divergence must have occurred in the same period.

<span class="mw-page-title-main">Monotreme</span> Order of egg-laying mammals

Monotremes are mammals of the order Monotremata. They are the only known group of living mammals that lay eggs, rather than bearing live young. The extant monotreme species are the platypus and the four species of echidnas. Monotremes are typified by structural differences in their brains, jaws, digestive tract, reproductive tract, and other body parts, compared to the more common mammalian types. Although they are different from almost all mammals in that they lay eggs, like all mammals, the female monotremes nurse their young with milk.

<span class="mw-page-title-main">Yinotheria</span> Subclass of mammals

Yinotheria is a proposed basal subclass clade of crown mammals uniting the Shuotheriidae, an extinct group of mammals from the Jurassic of Eurasia, with Australosphenida, a group of mammals known from the Jurassic to Cretaceous of Gondwana, which possibly include living monotremes. Today, there are only five surviving species of monotremes which live in Australia and New Guinea, consisting of the platypus and four species of echidna. Fossils of yinotheres have been found in Britain, China, Russia, Madagascar and Argentina. Contrary to other known crown mammals, they retained postdentary bones as shown by the presence of a postdentary trough. The extant members (monotremes) developed the mammalian middle ear independently.

<span class="mw-page-title-main">Zalambdalestidae</span> Extinct family of mammals

Zalambdalestidae is a clade of Asian eutherians occurring during the Late Cretaceous. Once classified as Glires, features like epipubic bones and various cranial elements have identified these animals as outside of Placentalia, representing thus a specialised clade of non-placental eutherians without any living descendants, and potentially rather different from modern placentals in at least reproductive anatomy.

References

  1. Phillips, Matthew J.; Penny, David (2003). "The root of the mammalian tree inferred from whole mitochondrial genomes". Molecular Phylogenetics and Evolution. 28 (2): 171. Bibcode:2003MolPE..28..171P. CiteSeerX   10.1.1.518.7974 . doi:10.1016/S1055-7903(03)00057-5.
  2. Kullberg, Morgan; Hallström, Björn M; Arnason, Ulfur; Janke, Axel (2008). "Phylogenetic analysis of 1.5 Mbp and platypus EST data refute the Marsupionta hypothesis and unequivocally support Monotremata as sister group to Marsupialia/Placentalia". Zoologica Scripta. 37 (2): 115–127. doi:10.1111/j.1463-6409.2007.00319.x. S2CID   85196487.
  3. Killian, J. K; Buckley, T. R; Stewart, N; Munday, B. L; Jirtle, R. L (2001). "Marsupials and Eutherians reunited: genetic evidence for the Theria hypothesis of mammalian evolution". Mammalian Genome. 12 (7): 513–7. doi:10.1007/s003350020026. PMID   11420613. S2CID   16509358.
  4. Van Rheede, T; Bastiaans, T; Boone, D. N; Hedges, S. B; De Jong, W. W; Madsen, O (2006). "The platypus is in its place: nuclear genes and indels confirm the sister group relation of monotremes and Therians". Molecular Biology and Evolution. 23 (3): 587–97. doi: 10.1093/molbev/msj064 . PMID   16291999.
  5. Janke, Axel; Magnell, Ola; et al. (2002). "Phylogenetic Analysis of 18S rRNA and the Mitochondrial Genomes of the Wombat, Vombatus ursinus, and the Spiny Anteater, Tachyglossus aculeatus; Increased Support for the Marsupionta Hypothesis". J. Mol. Evol. 54 (1): 71–80. Bibcode:2002JMolE..54...71J. doi:10.1007/s00239-001-0019-8. PMID   11734900. S2CID   17410715 via ResearchGate.
  6. Grützner, Frank; Graves, Jeniffer A. Marshall (2004). "A platypus' eye view of the mammalian genome" (PDF). Curr. Opin. Genet. Dev. 14 (6): 642–649. doi:10.1016/j.gde.2004.09.006. PMID   15531159. Archived from the original (PDF) on 2016-03-11. Retrieved 2018-08-18 via University of Antwerp.