Last updated

Temporal range: Early Eocene
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Subclass: Theria
Genus: Tingamarra
Godthelp et al., 1992
T. porterorum
Binomial name
Tingamarra porterorum
Godthelp et al., 1992

Tingamarra is an extinct genus of mammals from Australia. Its age, lifestyle, and relationships remain controversial.



Tingamarra was discovered in 1987, when a single tooth was found at the Murgon fossil site in south-eastern Queensland. An ankle bone and an ear bone found at Murgon may also belong to this animal.


Holotype: QMF20564, isolated right lower molar, probably an M2 or M3. [1]


1. Non-twinned hypoconulid and entoconid.

2. Lack of a well developed buccal postcingulid.

3. Lack of anteroposteriorly compressed trigonid.

4. Broadly open trigonid.

5. Lingually situated paraconid that is also well anterior to the protoconid.

Assumed lifestyle

Tingamarra is believed to be a small (about 20 cm from head to tail) ground-dwelling mammal that ate insects and fruit.

Scientific significance

The age of Murgon fossils was determined as the early Eocene. [1] If it is correct, then these fossils are the oldest Australian mammal ones.

By the shape of the found tooth, Tingamarra was first classified as a condylarth. [1] This is a primitive order of mammals which are ancestral to modern ungulates. If this interpretation is correct, Tingamarra appears to be the only land-based placental mammal to have arrived to Australia before about 8 million years ago. The only other native placental mammals in Australia are rodents and dingos (which arrived here more recently), and bats (which presumably flew in).

Most Australian mammals are marsupials instead. Before Tingamarra was found, it was hypothesised that marsupials had done well in Australia only because for many millions of years they had no placentals to compete with. [1]

However, both the age and placental nature of Tingamarra were subsequently challenged by other researchers. Woodburne et al. [2] argued that: 1) the true age of Murgon fossil site is the late Oligocene, and 2) that indeed neither shape nor microstructure of the tooth do not allow to distinguish whether Tingamarra was marsupial or placental. Then Rose [3] concluded that at present there is no undoubted evidence to change the established views.

Related Research Articles

<span class="mw-page-title-main">Marsupial</span> Infraclass of mammals in the clade Metatheria

Marsupials are a diverse group of mammals belonging to the infraclass Marsupialia. They are natively found in Australasia, Wallacea, and the Americas. One of the defining features of marsupials is their unique reproductive strategy, where the young are born in a relatively undeveloped state and then nurtured within a pouch on their mothers abdomen.

<span class="mw-page-title-main">Molar (tooth)</span> Large tooth at the back of the mouth

The molars or molar teeth are large, flat teeth at the back of the mouth. They are more developed in mammals. They are used primarily to grind food during chewing. The name molar derives from Latin, molaris dens, meaning "millstone tooth", from mola, millstone and dens, tooth. Molars show a great deal of diversity in size and shape across the mammal groups. The third molar of humans is sometimes vestigial.

<i>Eomaia</i> Extinct genus of mammals

Eomaia is a genus of extinct fossil mammals containing the single species Eomaia scansoria, discovered in rocks that were found in the Yixian Formation, Liaoning Province, China, and dated to the Barremian Age of the Lower Cretaceous about 125 million years ago. The single fossil specimen of this species is 10 centimetres (3.9 in) in length and virtually complete. An estimate of the body weight is 20–25 grams (0.71–0.88 oz). It is exceptionally well-preserved for a 125-million-year-old specimen. Although the fossil's skull is squashed flat, its teeth, tiny foot bones, cartilages and even its fur are visible.

<span class="mw-page-title-main">Marsupial mole</span> Genus of marsupials

Marsupial moles, the Notoryctidae family, are two species of highly specialized marsupial mammals that are found in the Australian interior. They are small fossorial marsupials that anatomically converge on fossorial placental mammals, such as extant golden moles (Chrysochloridae) and extinct epoicotheres (Pholidota). The species are:

<i>Steropodon</i> Extinct genus of monotremes

Steropodon is a genus of prehistoric platypus-like monotreme, or egg-laying mammal. It contains a single species, Steropodon galmani, that lived about 100.2–96.6 million years ago (mya) during the Cretaceous period, from early to middle Cenomanian. It is one of the oldest monotremes discovered, and is one of the oldest Australian mammal discoveries. Several other monotremes are known from the Griman Creek Formation, including Dharragarra, Kollikodon, Opalios, Parvopalus, and Stirtodon.

Teinolophos is a prehistoric species of monotreme, or egg-laying mammal, from the Teinolophidae. It is known from four specimens, each consisting of a partial lower jawbone collected from the Wonthaggi Formation at Flat Rocks, Victoria, Australia. It lived during the late Barremian age of the Lower Cretaceous.

<span class="mw-page-title-main">Sparassodonta</span> Extinct order of mammals

Sparassodonta is an extinct order of carnivorous metatherian mammals native to South America, related to modern marsupials. They were once considered to be true marsupials, but are now thought to be a separate side branch that split before the last common ancestor of all modern marsupials. A number of these mammalian predators closely resemble placental predators that evolved separately on other continents, and are cited frequently as examples of convergent evolution. They were first described by Florentino Ameghino, from fossils found in the Santa Cruz beds of Patagonia. Sparassodonts were present throughout South America's long period of "splendid isolation" during the Cenozoic; during this time, they shared the niches for large warm-blooded predators with the flightless terror birds. Previously, it was thought that these mammals died out in the face of competition from "more competitive" placental carnivorans during the Pliocene Great American Interchange, but more recent research has showed that sparassodonts died out long before eutherian carnivores arrived in South America. Sparassodonts have been referred to as borhyaenoids by some authors, but currently the term Borhyaenoidea refers to a restricted subgroup of sparassodonts comprising borhyaenids and their close relatives.

The mammals of Australia have a rich fossil history, as well as a variety of extant mammalian species, dominated by the marsupials, but also including monotremes and placentals. The marsupials evolved to fill specific ecological niches, and in many cases they are physically similar to the placental mammals in Eurasia and North America that occupy similar niches, a phenomenon known as convergent evolution. For example, the top mammalian predators in Australia, the Tasmanian tiger and the marsupial lion, bore a striking resemblance to large canids such as the gray wolf and large cats respectively; gliding possums and flying squirrels have similar adaptations enabling their arboreal lifestyle; and the numbat and anteaters are both digging insectivores. Most of Australia's mammals are herbivores or omnivores.

The natural history of Australia has been shaped by the geological evolution of the Australian continent from Gondwana and the changes in global climate over geological time. The building of the Australian continent and its association with other land masses, as well as climate changes over geological time, have created the unique flora and fauna present in Australia today.

<i>Kambara</i> Extinct genus of reptiles

Kambara is an extinct genus of mekosuchine crocodylian that lived during the Eocene epoch in Australia. It is generally thought to have been a semi-aquatic generalist, living a lifestyle similar to many of today's crocodiles. Four species are currently recognised, the sympatric Kambara murgonensis and Kambara implexidens from sediments near Murgon, the poorly preserved Kambara molnari from the Rundle Formation and the youngest of the four, Kambara taraina, also from the Rundle Formation. Kambara were medium-sized crocodilians, with mature specimens generally reaching lengths from 3–4 m (9.8–13.1 ft).

<span class="mw-page-title-main">Evolution of mammals</span> Derivation of mammals from a synapsid precursor, and the adaptive radiation of mammal species

The evolution of mammals has passed through many stages since the first appearance of their synapsid ancestors in the Pennsylvanian sub-period of the late Carboniferous period. By the mid-Triassic, there were many synapsid species that looked like mammals. The lineage leading to today's mammals split up in the Jurassic; synapsids from this period include Dryolestes, more closely related to extant placentals and marsupials than to monotremes, as well as Ambondro, more closely related to monotremes. Later on, the eutherian and metatherian lineages separated; the metatherians are the animals more closely related to the marsupials, while the eutherians are those more closely related to the placentals. Since Juramaia, the earliest known eutherian, lived 160 million years ago in the Jurassic, this divergence must have occurred in the same period.

The natural history of New Zealand began when the landmass Zealandia broke away from the supercontinent Gondwana in the Cretaceous period. Before this time, Zealandia shared its past with Australia and Antarctica. Since this separation, the New Zealand landscape has evolved in physical isolation, although much of its current biota has more recent connections with species on other landmasses. The exclusively natural history of the country ended in about 1300 AD, when humans first settled, and the country's environmental history began. The period from 1300 AD to today coincides with the extinction of many of New Zealand's unique species that had evolved there.

<i>Djarthia</i> Extinct genus of marsupial

Djarthia is an extinct monotypic genus of marsupial. It is the oldest marsupial found in Australia, discovered at the Murgon fossil site in south-eastern Queensland.

<span class="mw-page-title-main">Monotreme</span> Order of egg-laying mammals

Monotremes are mammals of the order Monotremata. They are the only known group of living mammals that lay eggs, rather than bearing live young. The extant monotreme species are the platypus and the four species of echidnas. Monotremes are typified by structural differences in their brains, jaws, digestive tract, reproductive tract, and other body parts, compared to the more common mammalian types. Although they are different from almost all mammals in that they lay eggs, like all mammals, the female monotremes nurse their young with milk.

<i>Ambondro mahabo</i> Species of small mammal from the middle Jurassic of Madagascar

Ambondro mahabo is a mammal from the Middle Jurassic (Bathonian) Isalo III Formation of Madagascar. The only described species of the genus Ambondro, it is known from a fragmentary lower jaw with three teeth, interpreted as the last premolar and the first two molars. The premolar consists of a central cusp with one or two smaller cusps and a cingulum (shelf) on the inner, or lingual, side of the tooth. The molars also have such a lingual cingulum. They consist of two groups of cusps: a trigonid of three cusps at the front and a talonid with a main cusp, a smaller cusp, and a crest at the back. Features of the talonid suggest that Ambondro had tribosphenic molars, the basic arrangement of molar features also present in marsupial and placental mammals. It is the oldest known mammal with putatively tribosphenic teeth; at the time of its discovery it antedated the second oldest example by about 25 million years.

UA 8699 is a fossil mammalian tooth from the Cretaceous of Madagascar. A broken lower molar about 3.5 mm (0.14 in) long, it is from the Maastrichtian of the Maevarano Formation in northwestern Madagascar. Details of its crown morphology indicate that it is a boreosphenidan, a member of the group that includes living marsupials and placental mammals. David W. Krause, who first described the tooth in 2001, interpreted it as a marsupial on the basis of five shared characters, but in 2003 Averianov and others noted that all those are shared by zhelestid placentals and favored a close relationship between UA 8699 and the Spanish zhelestid Lainodon. Krause used the tooth as evidence that marsupials were present on the southern continents (Gondwana) as early as the late Cretaceous and Averianov and colleagues proposed that the tooth represented another example of faunal exchange between Africa and Europe at the time.

Several mammals are known from the Mesozoic of Madagascar. The Bathonian Ambondro, known from a piece of jaw with three teeth, is the earliest known mammal with molars showing the modern, tribosphenic pattern that is characteristic of marsupial and placental mammals. Interpretations of its affinities have differed; one proposal places it in a group known as Australosphenida with other Mesozoic tribosphenic mammals from the southern continents (Gondwana) as well as the monotremes, while others favor closer affinities with northern (Laurasian) tribosphenic mammals or specifically with placentals. At least five species are known from the Maastrichtian, including a yet undescribed species known from a nearly complete skeleton that may represent a completely new group of mammals. The gondwanathere Lavanify, known from two teeth, is most closely related to other gondwanatheres found in India and Argentina. Two other teeth may represent another gondwanathere or a different kind of mammal. One molar fragment is one of the few known remains of a multituberculate mammal from Gondwana and another has been interpreted as either a marsupial or a placental.

The Murgon fossil site is a paleontological site of early Eocene age in south-eastern Queensland, Australia. It lies near the town of Murgon, some 270 km north-west of Brisbane. The Murgon site is important as the only site on the continent with a diverse range of vertebrate fossils dating from the early Paleogene Period, making it a crucial period in mammal evolution. It is also important in demonstrating Australia's Gondwanan links with South America in the form of similar fossils from the two continents.

Dermotherium is a genus of fossil mammals closely related to the living colugos, a small group of gliding mammals from Southeast Asia. Two species are recognized: D. major from the Late Eocene of Thailand, based on a single fragment of the lower jaw, and D. chimaera from the Late Oligocene of Thailand, known from three fragments of the lower jaw and two isolated upper molars. In addition, a single isolated upper molar from the Early Oligocene of Pakistan has been tentatively assigned to D. chimaera. All sites where fossils of Dermotherium have been found were probably forested environments and the fossil species were probably forest dwellers like living colugos, but whether they had the gliding adaptations of the living species is unknown.

Yingabalanara is an extinct mammal from the Miocene of Australia. Known only from a few teeth, its affinities with other mammal groups remain unresolved.


  1. 1 2 3 4 Godthelp, Henk; Archer, Michael; Cifelli, Richard; Hand, Suzanne J. & Gilkeson, Coral F. (1992). "Earliest known Australian Tertiary mammal fauna". Nature. 356 (6369): 514–516. Bibcode:1992Natur.356..514G. doi:10.1038/356514a0. S2CID   4338242.
  2. Woodburne, Michael O. & Case, Judd A. (1996). "Dispersal, Vicariance, and the Late Cretaceous to Early Tertiary Land Mammal Biogeography from South America to Australia". Journal of Mammalian Evolution. 3 (2): 121–161. doi:10.1007/bf01454359. S2CID   44211530.
  3. Rose, Kenneth D. (2006). "Reflections and Speculations on the Beginning of the Age of Mammals". The Beginning of the Age of mammals. Baltimore: The Johns Hopkins University Press. p. 337. ISBN   0-8018-8472-1.