Triconodon

Last updated

Triconodon
Temporal range: Berriasian
~145–140  Ma
O
S
D
C
P
T
J
K
Pg
N
Triconodon Owen.jpg
Triconodon mordax jaw, Richard Owen 1861
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Clade: Eutriconodonta
Family: Triconodontidae
Genus: Triconodon
Owen, 1859
Type species
Triconodon mordax
Owen, 1859
Other species
  • T. averianovi Jäger, Cifelli & Martin, 2020
Synonyms
  • TriacanthodonOwen, 1871

Triconodon ("three-coned tooth") is a genus of extinct mammal from the Early Cretaceous of England and France with two known species: T. mordax and T. averianovi. First described in 1859 by Richard Owen, [1] it is the type genus for the order Triconodonta, a group of mammals characterised by their three-cusped (triconodont) molar teeth. Since then, this "simplistic" type of dentition has been understood to be either ancestral for mammals or else to have evolved multiple times, rendering "triconodonts" a paraphyletic or polyphyletic assemblage respectively, but several lineages of "triconodont" mammals do form a natural, monophyletic group, known as Eutriconodonta, of which Triconodon is indeed part of.

Contents

Triconodon, therefore, is significant in the understanding of the evolution of mammals by originating the understanding of the "triconodont" grade and eutriconodont clade. Further discoveries on its skeletal anatomy also offer further insights on the palaeobiology of Mesozoic mammals. [2]

Discovery

The type specimen of Triconodon is BMNH 47764, a single mandible found in the Purbeck Group, England, pertaining to the type species (T. mordax). [1] Since then, several other specimens have been found in this region, mostly represented by skulls and jaws, making it the most common mammal fossils in this area of Britain. [2] These deposits date to the earliest Cretaceous, to the Berriasian at around 145-140 million years of age. The second species, T. averianovi, was named in 2020 based on fossils found in the Berriasian-aged Lulworth Formation, England. [3]

A single specimen has also been found in the Champblanc Quarry in France, dating to roughly the same age. It is unclear if it belongs to the same species as the British form, though given the close temporal and geographical proximity it seems likely. [4]

Classification

Triconodon is known from two species, represented only by T. averianovi and T. mordax (though see above). Besides being the type genus and species for Eutriconodonta as seen above, it is also the type genus and species for Triconodontidae, erected in 1887 by Charles Marsh. [5] Within this group it is usually recovered in a basal position, sometimes as sister taxa to Trioracodon , [6] [7] or closer to the group containing the rest of the clade, rendering Trioracodon in the basalmost position. [8]

Biology

Like most eutriconodonts, Triconodon was probably a carnivore, its triconodont teeth being well adapted for shearing, and possessing other speciations such as long canines and powerful jaw musculature. [2] It was about as large as a modern cat, suggesting that it hunted vertebrate prey such as other mammals or small dinosaurs. [9] A study detailing Mesozoic mammal diets ranks it among carnivorous taxa. [10]

Tooth replacement

Triconodon is one of the few Mesozoic mammals with direct evidence of tooth eruption, thanks to a broad ontogenetic range presented by the specimens. Through several juvenile specimens we can document the replacement of its lower fourth premolar, erupting and coming into use when at least three out of its four molars were already fully erupted. [11]

Brain

One of the earliest fossil brain endocast studies has been performed for Triconodon. [11] The olfactory lobe is large, with a teardrop-shaped outline, suggesting a well developed sense of smell.

The cerebral hemisphere is long, oval and flat, lacking the inflated appearance present in monotremes, multituberculates and therians. The cerebrum is neither expanded anteriorly to overlap the posterior part of the olfactory lobe, nor is it hemispherical. It is similar to that of multituberculates in that it has a large, roughly triangular bulge, now thought to be the superior cistern. The midbrain was apparently exposed to the dorsal side of the brain as with many other non-therian mammals. [2]

What this indicates about the animal's intelligence is currently unclear, though its overall brain proportions are somewhat smaller than those of more derived mammals like multituberculates and therians. [12]

Related Research Articles

<i>Morganucodon</i> Early mammaliaform genus of the Triassic and Jurassic periods

Morganucodon is an early mammaliaform genus that lived from the Late Triassic to the Middle Jurassic. It first appeared about 205 million years ago. Unlike many other early mammaliaforms, Morganucodon is well represented by abundant and well preserved material. Most of this comes from Glamorgan in Wales, but fossils have also been found in Yunnan Province in China and various parts of Europe and North America. Some closely related animals (Megazostrodon) are known from exquisite fossils from South Africa.

<i>Repenomamus</i> Extinct genus of mammals

Repenomamus is a genus of opossum- to badger-sized gobiconodontid mammal containing two species, Repenomamus robustus and Repenomamus giganticus. Both species are known from fossils found in China that date to the early Cretaceous period, about 125-123.2 million years ago. R. robustus is one of several Mesozoic mammals for which there is good evidence that it fed on vertebrates, including dinosaurs. Though it is not entirely clear whether or not these animals primarily hunted live dinosaurs or scavenged dead ones, evidence for the former is present in fossilized remains showcasing the results of what was most likely a predation attempt by R. robustus directed at a specimen of the dinosaur Psittacosaurus lujiatunensis. R. giganticus is among the largest mammals known from the Mesozoic era.

<span class="mw-page-title-main">Tribosphenida</span> Infralegion of mammals

Tribosphenida is a group (infralegion) of mammals that includes the ancestor of Hypomylos, Aegialodontia and Theria. Its current definition is more or less synonymous with Boreosphenida.

<i>Jeholodens</i> Extinct family of mammals

Jeholodens is an extinct genus of primitive mammal belonging to the order Eutriconodonta, and which lived in present-day China during the Middle Cretaceous about 125 million years ago.

<i>Zhangheotherium</i> Extinct family of mammals

Zhangheotherium is an extinct genus of "symmetrodont" mammal from the Early Cretaceous of China. A single species is known, Zhangheotherium quinquecuspidens from Jianshangou Beds of the Yixian Formation. Zhangheotherium was the first "symmetrodont" known from a nearly complete skeleton, expanding knowledge of the group beyond isolated teeth and jaws. The genus name honors Zhang He, who collected the holotype fossil from Liaoning Province prior to its 1997 description. The specific name is Latin for "five-cusped teeth".

<i>Akidolestes</i> Extinct genus of mammals

Akidolestes is an extinct genus of mammals of the family Spalacotheriidae, a group of mammals related to therians.

<span class="mw-page-title-main">Australosphenida</span> Subclass of mammals

The Australosphenida are a clade of mammals, containing mammals with tribosphenic molars, known from the Jurassic to Mid-Cretaceous of Gondwana. They are generally thought to have acquired their tribosphenic molars independently from those of Tribosphenida. Fossils of australosphenidans have been found from the Jurassic of Madagascar and Argentina, and Cretaceous of Australia and Argentina. Monotremes have also been considered a part of this group in some studies, but this is disputed.

<span class="mw-page-title-main">Volaticotherini</span> Extinct clade of mammals

Volaticotherini is a clade of eutriconodont mammals from the Mesozoic. In addition to the type genus Volaticotherium, it includes the genera Argentoconodon, Ichthyoconodon, and potentially Triconolestes.

<span class="mw-page-title-main">Eutriconodonta</span> Extinct order of mammals

Eutriconodonta is an order of early mammals. Eutriconodonts existed in Asia, Africa, Europe, North and South America during the Jurassic and the Cretaceous periods. The order was named by Kermack et al. in 1973 as a replacement name for the paraphyletic Triconodonta.

<i>Gobiconodon</i> Extinct genus of mammals

Gobiconodon is an extinct genus of carnivorous mammals belonging to the family Gobiconodontidae. Undisputed records of Gobiconodon are restricted to the Early Cretaceous of Asia and North America, but isolated teeth attributed to the genus have also been described from formations in England and Morocco dating as far back as the Middle Jurassic. Species of Gobiconodon varied considerably in size, with G. ostromi, one of the larger species, being around the size of a modern Virginia opossum. Like other gobiconodontids, it possessed several speciations towards carnivory, such as shearing molariform teeth, large canine-like incisors and powerful jaw and forelimb musculature, indicating that it probably fed on vertebrate prey. Unusually among predatory mammals and other eutriconodonts, the lower canines were vestigial, with the first lower incisor pair having become massive and canine-like. Like the larger Repenomamus there might be some evidence of scavenging.

<i>Kuehneotherium</i> Extinct genus of mammaliaforms

Kuehneotherium is an early mammaliaform genus, previously considered a holothere, that lived during the Late Triassic-Early Jurassic Epochs and is characterized by reversed-triangle pattern of molar cusps. Although many fossils have been found, the fossils are limited to teeth, dental fragments, and mandible fragments. The genus includes Kuehneotherium praecursoris and all related species. It was first named and described by Doris M. Kermack, K. A. Kermack, and Frances Mussett in November 1967. The family Kuehneotheriidae and the genus Kuehneotherium were created to house the single species Kuehneotherium praecursoris. Modeling based upon a comparison of the Kuehneotherium jaw with other mammaliaforms indicates it was about the size of a modern-day shrew between 4 and 5.5 g at adulthood.

<span class="mw-page-title-main">Gobiconodontidae</span> Extinct family of mammals

Gobiconodontidae is a family of extinct mammals that ranged from the mid-Jurassic to the early Late Cretaceous, though most common during the Early Cretaceous. The Gobiconodontids form a diverse lineage of carnivorous non-therian mammals, and include some of the best preserved Mesozoic mammal specimens.

Several mammals are known from the Mesozoic of Madagascar. The Bathonian Ambondro, known from a piece of jaw with three teeth, is the earliest known mammal with molars showing the modern, tribosphenic pattern that is characteristic of marsupial and placental mammals. Interpretations of its affinities have differed; one proposal places it in a group known as Australosphenida with other Mesozoic tribosphenic mammals from the southern continents (Gondwana) as well as the monotremes, while others favor closer affinities with northern (Laurasian) tribosphenic mammals or specifically with placentals. At least five species are known from the Maastrichtian, including a yet undescribed species known from a nearly complete skeleton that may represent a completely new group of mammals. The gondwanathere Lavanify, known from two teeth, is most closely related to other gondwanatheres found in India and Argentina. Two other teeth may represent another gondwanathere or a different kind of mammal. One molar fragment is one of the few known remains of a multituberculate mammal from Gondwana and another has been interpreted as either a marsupial or a placental.

Juchilestes is an amphidontid mammal genus from the early Cretaceous. It lived in what is now the Beipiao of western Liaoning, eastern China. It is known from the holotype D2607, which consists of three-dimensionally preserved, partial skull with mandibles and some teeth. It was found in 2004 from the Lujiatun Site of the Yixian Formation. It was first named by Chun-Ling Gao, Gregory P. Wilson, Zhe-Xi Luo, A. Murat Maga, Qingjin Meng and Xuri Wang in 2010 and the type species is Juchilestes liaoningensis.

<span class="mw-page-title-main">Yinotheria</span> Subclass of mammals

Yinotheria is a proposed basal subclass clade of crown mammals uniting the Shuotheriidae, an extinct group of mammals from the Jurassic of Eurasia, with Australosphenida, a group of mammals known from the Jurassic to Cretaceous of Gondwana, which possibly include living monotremes. Today, there are only five surviving species of monotremes which live in Australia and New Guinea, consisting of the platypus and four species of echidna. Fossils of yinotheres have been found in Britain, China, Russia, Madagascar and Argentina. Contrary to other known crown mammals, they retained postdentary bones as shown by the presence of a postdentary trough. The extant members (monotremes) developed the mammalian middle ear independently.

<i>Ichthyoconodon</i> Extinct family of mammals

Ichthyoconodon is an extinct genus of eutriconodont mammal from the Lower Cretaceous of Morocco. It is notable for having been found in a unique marine location, and the shape of its teeth suggests an unusual, potentially fish-eating ecological niche. Analysis suggests it is part of a group of gliding mammals that includes Volaticotherium.

Jugulator is an extinct genus of mammals from the Cretaceous of North America. It contains one species, Jugulator amplissimus. A eutriconodont, it is known from the Cedar Mountain Formation, and is both a large sized and possibly ecologically specialised taxon, showcasing the diversity of mammals in the Mesozoic.

<i>Dyskritodon</i> Extinct family of mammals

Dyskritodon is a genus of extinct mammal from the Early Cretaceous of Morocco, and possibly the Early Jurassic of India. Of uncertain affinities, it is tentatively described as a eutriconodont.

Astroconodon is an extinct genus of mammal from the Cretaceous of North America. Part of Eutriconodonta, it was a small sized predator, either a terrestrial insectivore and carnivore, or a semi-aquatic piscivore.

Alticonodon is a genus of extinct mammal from the Late Cretaceous of North America. It is the geologically youngest known eutriconodont, and is a fairly more specialised animal than earlier representatives of this clade.

References

  1. 1 2 R. Owen. 1859. Palaeontology. Encyclopedia Britannica, 8th ed. 17:91-176 [P. Wagner/P. Wagner]
  2. 1 2 3 4 Zofia Kielan-Jaworowska, Richard L. Cifelli, Zhe-Xi Luo (2004). "Chapter 7: Eutriconodontans". Mammals from the Age of Dinosaurs: origins, evolution, and structure . New York: Columbia University Press. pp.  216–248. ISBN   0-231-11918-6.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Kai R. K. Jäger; Richard L. Cifelli; Thomas Martin (2020). "Tooth eruption in the Early Cretaceous British mammal Triconodon and description of a new species". Papers in Palaeontology. 7 (2): 1065–1080. doi: 10.1002/spp2.1329 .
  4. J. Pouech, J.-M. Mazin, and J.-P. Billon-Bruyat. 2006. Microvertebrate biodiversity from Cherves-de-Cognac (Lower Cretaceous, Berriasian: Charente, France). 9th International Symposium on Mesozoic Terrestrial Ecosystems and Biota, Abstracts and Proceedings Volume 96-100
  5. O. C. Marsh. 1887. American Jurassic mammals. The American Journal of Science, series 3 33(196):327-348
  6. Marisol Montellano; James A. Hopson; James M. Clark (2008). "Late Early Jurassic Mammaliaforms from Huizachal Canyon, Tamaulipas, México". Journal of Vertebrate Paleontology 28 (4): 1130–1143. doi : 10.1671/0272-4634-28.4.1130.
  7. Chun-Ling Gao, Gregory P. Wilson, Zhe-Xi Luo, A. Murat Maga, Qingjin Meng and Xuri Wang (2010). "A new mammal skull from the Lower Cretaceous of China with implications for the evolution of obtuse-angled molars and ‘amphilestid’ eutriconodonts". Proceedings of the Royal Society B: Biological Sciences 277 (1679): 237–246. doi : 10.1098/rspb.2009.1014. PMC   2842676. PMID   19726475.
  8. Thomas Martin, Jesús Marugán-Lobón, Romain Vullo, Hugo Martín-Abad, Zhe-Xi Luo & Angela D. Buscalioni (2015). A Cretaceous eutriconodont and integument evolution in early mammals. Nature 526, 380–384. doi : 10.1038/nature14905
  9. "Triconodon | fossil mammal genus".
  10. David M. Grossnickle, P. David Polly, Mammal disparity decreases during the Cretaceous angiosperm radiation, Published 2 October 2013. doi : 10.1098/rspb.2013.2110
  11. 1 2 G. G. Simpson. 1928. A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum 1-215
  12. Harry Jerison, Evolution of The Brain and Intelligence, 02/12/2012