Medical genetics of Jews

Last updated

The medical genetics of Jews have been studied to identify and prevent some rare genetic diseases that, while still rare, are more common than average among people of Jewish descent. There are several autosomal recessive genetic disorders that are more common than average in ethnically Jewish populations, particularly Ashkenazi Jews, because of the experiments conducted on their family during the holocaust, its speculated other potential reasons are thought to be population bottlenecks and the fact that ashkenazi used to only marey other ashkenazi pre holocaust, some risk 5th cousin for example . [1] These two phenomena reduce genetic diversity and raise the chance that two parents will carry a mutation in the same gene and pass on both mutations to a child.

Contents

The genetics of Ashkenazi Jews have been particularly well studied, because the phenomenon affects them the most. This has resulted in the discovery of many genetic disorders associated with this ethnic group. [2] The medical genetics of Sephardic Jews and Mizrahi Jews are more complicated, because they are genetically more diverse, and therefore no genetic disorders are more common in these groups as a whole; instead, they tend to have the genetic diseases common in their various countries of origin. [2] [3]

Several organizations, such as Dor Yeshorim, [4] offer screening for Ashkenazi genetic diseases, and these programs have done much, particularly by reducing the instance of Tay–Sachs disease. [5]

History and purpose

Different ethnic groups tend to have different rates of hereditary diseases, with some being more common, and some less common. Hereditary diseases, particularly hemophilia, were recognized early in Jewish history, even being described in the Talmud. [6] However, the scientific study of hereditary disease in Jewish populations was initially hindered by scientific racism, which was based on racial supremacism. [7] [ better source needed ] [8] [ better source needed ]

However, modern studies on the genetics of particular ethnic groups have the tightly defined purpose of avoiding the birth of children with genetic diseases, or identifying people at particular risk of developing a disease in the future. [7] Consequently, some members of the Jewish community have been very supportive of modern genetic testing programs; this high level of cooperation has raised concerns that conclusions may lead to stigmatization of the Jewish community. [6]

Genetics of Jewish populations

Most populations contain hundreds of alleles that could potentially cause disease, and most people are heterozygotes for one or two recessive alleles that would be lethal in a homozygote. [9] Although the overall frequency of disease-causing alleles does not vary much between populations, the practice of consanguineous marriage (marriage between second cousins or closer relatives) has been common in some Jewish communities, which produces a small increase in the number of children with congenital defects. [1]

According to Daphna Birenbaum Carmeli at the University of Haifa, Jewish populations have been studied thoroughly because: [10]

The result is a form of ascertainment bias. This has sometimes created an impression that Jews are more susceptible to genetic disease than other populations. Carmeli writes, "Jews are over-represented in human genetic literature, particularly in mutation-related contexts." [10]

This set of advantages have led to Ashkenazi Jews in particular being used in many genetic studies, not just in the study of genetic diseases. For example, a series of publications on Ashkenazi centenarians established their longevity was strongly inherited and associated with lower rates of age-related diseases. [11] This "healthy aging" phenotype may be due to higher levels of telomerase in these individuals. [12]

Ashkenazi diseases

Because of centuries of endogamy, today's 10 million Ashkenazi Jews descend from a population of 350 who lived about 600–800 years ago. [13] [14] That population derived from both Europe and the Middle East. Some evidence shows that the population bottleneck may have allowed deleterious alleles to increase in the population by genetic drift. [15]

This group has therefore been particularly intensively studied, and many mutations have been found to be common in Ashkenazim. [16] Of these diseases, many also occur in other Jewish groups and in non-Jewish populations, although the specific mutation that causes the disease may vary among populations. For example, two mutations in the glucocerebrosidase gene each cause Gaucher's disease in Ashkenazim, which is that group's most common genetic disease, but only one of these mutations is found in non-Jewish groups. [5] A few diseases are unique to this group; familial dysautonomia, for example, is almost unknown in other peoples. [5]

Genetic disorders common in Ashkenazi Jews [2]
DiseaseSubspecialtyMode of inheritanceGeneCarrier frequency
  Favism Medical geneticsX-linked G6PD
  Bloom syndrome Medical geneticsAutosomal recessive BLM 1/100
  Breast cancer and ovarian cancer OncologyAutosomal dominant BRCA1 or BRCA2 1/100 and 1/75, respectively
  Canavan disease Endocrinology, neurologyAutosomal recessive ASPA 1/60
  Congenital deafness Neurology, otorhinolaryngology, audiologyAutosomal recessive GJB2 or GJB6 1/25
  Cystic fibrosis Pulmonology, hepatologyAutosomal recessive CFTR 1/25
  Haemophilia C HematologyAutosomal recessive F11 1/12
  Familial dysautonomia NeurologyAutosomal recessive IKBKAP 1/30
  Familial hypercholesterolemia Endocrinology, chemical pathologyAutosomal dominant LDLR 1/69
  Familial hyperinsulinism Gastroenterology, endocrinology, pediatricsAutosomal recessive ABCC8 1/125–1/160
  Fanconi anemia C HematologyAutosomal recessive FACC 1/100
  Gaucher disease Endocrinology, neurologyAutosomal recessive GBA 1/7–1/18
  Glycogen Storage Disease type 1a Endocrinology, hematology, immunologyAutosomal recessive G6PC 1/71
  Mucolipidosis IV EndocrinologyAutosomal recessive MCOLN1 1/110
  Niemann–Pick (type A) Medical geneticsAutosomal recessive SMPD1 1/90
  Nonclassical 21 OHase deficiency EndocrinologyAutosomal recessive CPY21 1/6
  Parkinson's disease NeurologyAutosomal dominant LRRK2 1/42 [17]
  Tay–Sachs Medical geneticsAutosomal recessive HEXA 1/25–1/30
  Torsion dystonia NeurologyAutosomal dominant DYT1 1/4000
  Usher syndrome OphthalmologyAutosomal recessive PCDH15 1/72
  Warsaw breakage syndrome Medical genetics, pediatricsAutosomal recessive DDX11 1/50 [18]

Tay–Sachs disease

Tay–Sachs disease, which can present as a fatal illness of children that causes mental deterioration prior to death, was historically extremely common among Ashkenazi Jews, [19] with lower levels of the disease in some Pennsylvania Dutch, Italian, Irish Catholic, and French Canadian descent, especially those living in the Cajun community of Louisiana and the southeastern Quebec. [20] Since the 1970s, however, proactive genetic testing has been quite effective in eliminating Tay–Sachs from the Ashkenazi Jewish population. [21]

Lipid transport diseases

Gaucher's disease, in which lipids accumulate in inappropriate locations, occurs most frequently among Ashkenazi Jews; [22] the mutation is carried by roughly one in every 15 Ashkenazi Jews, compared to one in 100 of the general American population. [23] Gaucher's disease can cause brain damage and seizures, but these effects are not usually present in the form manifested among Ashkenazi Jews; while those affected still bruise easily, and it can still potentially rupture the spleen, it generally has only a minor impact on life expectancy.

Ashkenazi Jews are also highly affected by other lysosomal storage diseases, particularly in the form of lipid storage disorders. Compared to other ethnic groups, they more frequently act as carriers of mucolipidosis [24] and Niemann–Pick disease, [25] the latter of which can prove fatal.

The occurrence of several lysosomal storage disorders in the same population suggests the alleles responsible might have conferred some selective advantage in the past. [26] This would be similar to the hemoglobin allele which is responsible for sickle-cell disease, but solely in people with two copies; those with just one copy of the allele have a sickle cell trait and gain partial immunity to malaria as a result. This effect is called heterozygote advantage. [27]

Familial dysautonomia

Familial dysautonomia (Riley–Day syndrome), which causes vomiting, speech problems, an inability to cry, and false sensory perception, is almost exclusive to Ashkenazi Jews; [28] Ashkenazi Jews are almost 100 times more likely to carry the disease than anyone else. [29]

Other Ashkenazi diseases and disorders

Diseases inherited in an autosomal recessive pattern often occur in endogamous populations. Among Ashkenazi Jews, a higher incidence of specific genetic disorders and hereditary diseases has been verified, including:

Sephardi and Mizrahi diseases

In contrast to the Ashkenazi population, Sephardic and Mizrahi Jews are much more divergent groups, with ancestors from Spain, Portugal, Morocco, Tunisia, Algeria, Italy, Libya, the Balkans, Iran, Kurdistan, Turkey, India, and Yemen, with specific genetic disorders found in each regional group, or even in specific subpopulations in these regions. [2]

Genetic disorders common in Sephardic Jews [2]
DiseaseMode of inheritanceGene or enzymeCarrier frequencyPopulations
  Oculocutaneous albinism Ophthalmology, dermatologyAutosomal recessive TYR 1/30Morocco
  Ataxia–telangiectasia Neurology, medical geneticsAutosomal recessive ATM 1/80Morocco, Tunisia
  Creutzfeldt–Jakob disease NeurologyAutosomal dominant PRNP 1/24,000Libya
  Cerebrotendinous xanthomatosis Medical genetics, endocrinologyAutosomal recessive CYP27A1 1/70Morocco
Cystinuria EndocrinologyAutosomal recessive SLC7A9 1/25Libya
Familial Mediterranean fever Rheumatology, immunologyAutosomal recessive MEFV 1/5–7All MENA (Middle Eastern and North African countries).
  Glycogen storage disease III EndocrinologyAutosomal recessive AGL 1/35Morocco, North Africa
  Limb girdle muscular dystrophy NeurologyAutosomal recessive DYSF 1/10Libya
 Tay–SachsNeurologyAutosomal recessiveHEXA1/110Morocco
  11-β-hydroxylase deficiency EndocrinologyAutosomal recessive CYP11B1 1/30–1/128Morocco
Genetic disorders common in Mizrahi (Oriental) Jews [2]
DiseaseMode of inheritanceGene or enzymeCarrier frequencyPopulations
  Beta-thalassemia HematologyAutosomal recessive HBB 1/6Iran, Kurdistan, Syria
  Factor VII deficiency Hematology, medical geneticsAutosomal recessive F7 1/40Iran
  Familial Mediterranean fever Rheumatology, immunologyAutosomal recessive, but heterozygous carriers also can show clinical manifestations. MEFV 1/5–1/7Iran, Kurdistan, Armenia, Azerbaijan, North African Jews, Ashkenazi [49]
  Glucose-6-phosphate dehydrogenase deficiency Medical geneticsX-linked G6PD 1/4Iran, esp. Kurdistan, Syria and all MENA countries. Female heterozygotes can also show clinical symptoms due to lyonization (X-inactivation) especially during pregnancy. [50]
  Inclusion body myopathy NeurologyAutosomal recessive GNE 1/12Iran
  Metachromatic leukodystrophy Endocrinology, neurologyAutosomal recessive ARSA 1/50Yemen
  Oculopharyngeal muscular dystrophy NeurologyAutosomal, recessive or dominant PABPN1 1/7Bukhara
  Phenylketonuria Medical genetics, pediatrics, dieteticsAutosomal recessive PAH 1/35Yemen

Genetic testing in Jewish populations

One of the first genetic testing programs to identify heterozygote carriers of a genetic disorder was a program aimed at eliminating Tay–Sachs disease. This program began in 1970, and over one million people have now been screened for the mutation. [51] Identifying carriers and counseling couples on reproductive options have had a large impact on the incidence of the disease, with a decrease from 40 to 50 per year worldwide to only four or five per year. [5] Screening programs now test for several genetic disorders in Jews, although these focus on the Ashkenazi Jews, since other Jewish groups cannot be given a single set of tests for a common set of disorders. [3] In the US, these screening programs have been widely accepted by the Ashkenazi community, and have greatly reduced the frequency of the disorders. [52]

Prenatal testing for several genetic diseases is offered as commercial panels for Ashkenazi couples by both CIGNA and Quest Diagnostics. The CIGNA panel is available for testing for parental/preconception screening or following chorionic villus sampling or amniocentesis and tests for Bloom syndrome, Canavan disease, cystic fibrosis, familial dysautonomia, Fanconi anemia, Gaucher disease, mucolipidosis IV, Neimann-Pick disease type A, Tay-Sachs disease, and torsion dystonia. The Quest panel is for parental/preconception testing and tests for Bloom syndrome, Canavan disease, cystic fibrosis, familial dysautonomia, Fanconi anemia group C, Gaucher disease, Neimann-Pick disease types A and B, and Tay-Sachs disease.

The official recommendations of the American College of Obstetricians and Gynecologists is that Ashkenazi individuals be offered screening for Tay-Sachs disease, Canavan disease, cystic fibrosis, and familial dysautonomia as part of routine obstetrical care. [53]

In the orthodox community, an organization called Dor Yeshorim carries out anonymous genetic screening of couples before marriage to reduce the risk of children with genetic diseases being born. [54] The program educates young people on medical genetics and screens school-aged children for any disease genes. These results are then entered into an anonymous database, identified only by a unique ID number given to the person who was tested. If two people are considering getting married, they call the organization and tell them their ID numbers. The organization then tells them if they are genetically compatible. It is not divulged if one member is a carrier, so as to protect the carrier and his or her family from stigmatization. [54] However, this program has been criticized for exerting social pressure on people to be tested, and for screening for a broad range of recessive genes, including disorders such as Gaucher disease. [4]

Criticism

Hebrew University Professor Raphael Falk published a criticism of studies identifying genetic disorders as being the result of hereditary endogamy. [55] Dr. Sherry Brandt-Rauf of the University of Illinois and Sheila Rothman of Columbia University co-authored a critique of the methodologies as well as condemning those who worked on the eugenic studies which attributed genetic disorders to religious demographics in paper which explored the ramifications of such concepts entering the workplace stating, "such linkages 'exaggerate genetic differences among ethnic groups' and may result in 'health disparities' in groups not targeted for screening. [56]

See also

Related Research Articles

<span class="mw-page-title-main">Tay–Sachs disease</span> Human medical condition

Tay–Sachs disease is a genetic disorder that results in the destruction of nerve cells in the brain and spinal cord. The most common form is infantile Tay–Sachs disease, which becomes apparent around the age of three to six months of age, with the baby losing the ability to turn over, sit, or crawl. This is then followed by seizures, hearing loss, and inability to move, with death usually occurring by the age of three to five. Less commonly, the disease may occur later in childhood, adolescence, or adulthood. These forms tend to be less severe, but the juvenile form typically results in death by age 15.

<span class="mw-page-title-main">Dor Yeshorim</span> Jewish genetic screening organization

Dor Yeshorim also called Committee for Prevention of Jewish Genetic Diseases, is a nonprofit organization that offers genetic screening to members of the Jewish community worldwide. Its objective is to minimize, and eventually eliminate, the incidence of genetic disorders common to Jewish people, such as Tay–Sachs disease. Dor Yeshorim is based in Brooklyn, New York, but has offices in Israel and various other countries.

<span class="mw-page-title-main">Gaucher's disease</span> Medical condition

Gaucher's disease or Gaucher disease (GD) is a genetic disorder in which glucocerebroside accumulates in cells and certain organs. The disorder is characterized by bruising, fatigue, anemia, low blood platelet count and enlargement of the liver and spleen, and is caused by a hereditary deficiency of the enzyme glucocerebrosidase, which acts on glucocerebroside. When the enzyme is defective, glucocerebroside accumulates, particularly in white blood cells and especially in macrophages. Glucocerebroside can collect in the spleen, liver, kidneys, lungs, brain, and bone marrow.

<span class="mw-page-title-main">Lysosomal storage disease</span> Medical condition

Lysosomal storage diseases are a group of over 70 rare inherited metabolic disorders that result from defects in lysosomal function. Lysosomes are sacs of enzymes within cells that digest large molecules and pass the fragments on to other parts of the cell for recycling. This process requires several critical enzymes. If one of these enzymes is defective due to a mutation, the large molecules accumulate within the cell, eventually killing it.

<span class="mw-page-title-main">Familial dysautonomia</span> Medical condition

Familial dysautonomia (FD), also known as Riley-Day syndrome, is a rare, progressive, recessive genetic disorder of the autonomic nervous system that affects the development and survival of sensory, sympathetic, and some parasympathetic neurons in the autonomic and sensory nervous system.

Genetics, a discipline of biology, is the science of heredity and variation in living organisms.

<span class="mw-page-title-main">Sandhoff disease</span> Medical condition

Sandhoff disease is a lysosomal genetic, lipid storage disorder caused by the inherited deficiency to create functional beta-hexosaminidases A and B. These catabolic enzymes are needed to degrade the neuronal membrane components, ganglioside GM2, its derivative GA2, the glycolipid globoside in visceral tissues, and some oligosaccharides. Accumulation of these metabolites leads to a progressive destruction of the central nervous system and eventually to death. The rare autosomal recessive neurodegenerative disorder is clinically almost indistinguishable from Tay–Sachs disease, another genetic disorder that disrupts beta-hexosaminidases A and S. There are three subsets of Sandhoff disease based on when first symptoms appear: classic infantile, juvenile and adult late onset.

<span class="mw-page-title-main">GM2-gangliosidosis, AB variant</span> Medical condition

GM2-gangliosidosis, AB variant is a rare, autosomal recessive metabolic disorder that causes progressive destruction of nerve cells in the brain and spinal cord. It has a similar pathology to Sandhoff disease and Tay–Sachs disease. The three diseases are classified together as the GM2 gangliosidoses, because each disease represents a distinct molecular point of failure in the activation of the same enzyme, beta-hexosaminidase. AB variant is caused by a failure in the gene that makes an enzyme cofactor for beta-hexosaminidase, called the GM2 activator.

IKBKAP is a human gene encoding the IKAP protein, which is ubiquitously expressed at varying levels in all tissue types, including brain cells. The IKAP protein is thought to participate as a sub-unit in the assembly of a six-protein putative human holo-Elongator complex, which allows for transcriptional elongation by RNA polymerase II. Further evidence has implicated the IKAP protein as being critical in neuronal development, and directs that decreased expression of IKAP in certain cell types is the molecular basis for the severe, neurodevelopmental disorder familial dysautonomia. Other pathways that have been connected to IKAP protein function in a variety of organisms include tRNA modification, cell motility, and cytosolic stress signalling. Homologs of the IKBKAP gene have been identified in multiple other Eukaryotic model organisms. Notable homologs include Elp1 in yeast, Ikbkap in mice, and D-elp1 in fruit flies. The fruit fly homolog (D-elp1) has RNA-dependent RNA polymerase activity and is involved in RNA interference.

<span class="mw-page-title-main">Sphingolipidoses</span> Medical condition

Sphingolipidoses are a class of lipid storage disorders or degenerative storage disorders caused by deficiency of an enzyme that is required for the catabolism of lipids that contain ceramide, also relating to sphingolipid metabolism. The main members of this group are Niemann–Pick disease, Fabry disease, Krabbe disease, Gaucher disease, Tay–Sachs disease and metachromatic leukodystrophy. They are generally inherited in an autosomal recessive fashion, but notably Fabry disease is X-linked recessive. Taken together, sphingolipidoses have an incidence of approximately 1 in 10,000, but substantially more in certain populations such as Ashkenazi Jews. Enzyme replacement therapy is available to treat mainly Fabry disease and Gaucher disease, and people with these types of sphingolipidoses may live well into adulthood. The other types are generally fatal by age 1 to 5 years for infantile forms, but progression may be mild for juvenile- or adult-onset forms.

Mucolipidosis type IV is an autosomal recessive lysosomal storage disorder. Individuals with the disorder have many symptoms including delayed psychomotor development and various ocular aberrations. The disorder is caused by mutations in the MCOLN1 gene, which encodes a non-selective cation channel, mucolipin1. These mutations disrupt cellular functions and lead to a neurodevelopmental disorder through an unknown mechanism. Researchers dispute the physiological role of the protein product and which ion it transports.

In medical genetics, compound heterozygosity is the condition of having two or more heterogeneous recessive alleles at a particular locus that can cause genetic disease in a heterozygous state; that is, an organism is a compound heterozygote when it has two recessive alleles for the same gene, but with those two alleles being different from each other. Compound heterozygosity reflects the diversity of the mutation base for many autosomal recessive genetic disorders; mutations in most disease-causing genes have arisen many times. This means that many cases of disease arise in individuals who have two unrelated alleles, who technically are heterozygotes, but both the alleles are defective.

<span class="mw-page-title-main">LRRK2</span> Protein kinase found in humans

Leucine-rich repeat kinase 2 (LRRK2), also known as dardarin and PARK8, is a large, multifunctional kinase enzyme that in humans is encoded by the LRRK2 gene. LRRK2 is a member of the leucine-rich repeat kinase family. Variants of this gene are associated with an increased risk of Parkinson's disease and Crohn's disease.

<span class="mw-page-title-main">HEXA</span> Protein-coding gene in the species Homo sapiens

Hexosaminidase A (alpha polypeptide), also known as HEXA, is an enzyme that in humans is encoded by the HEXA gene, located on the 15th chromosome.

A pseudodeficiency allele or pseudodeficiency mutation is a mutation that alters the protein product or changes the gene's expression, but without causing disease. For example, in the lysosomal storage diseases, patients with a pseudodeficiency allele show greatly reduced enzyme activity, yet they remain clinically healthy.

The Program for Jewish Genetic Health is a centralized resource for the Jewish community, addressing all health concerns related to the medical genetics of the Jewish people. The Program's stated mission is to protect the health of the current Jewish community and its future generations. Launched in 2011, the Program for Jewish Genetic Health integrates the social mission they Montefiore Health System with the clinical services, genetic education, and biomedical advances of its medical school, the Albert Einstein College of Medicine.

For preventing Tay–Sachs disease, three main approaches have been used to prevent or reduce the incidence of Tay–Sachs disease in those who are at high risk:

<span class="mw-page-title-main">History of Tay–Sachs disease</span>

The history of Tay–Sachs disease started with the development and acceptance of the evolution theory of disease in the 1860s and 1870s, the possibility that science could explain and even prevent or cure illness prompted medical doctors to undertake more precise description and diagnosis of disease. Waren Tay and Bernard Sachs, two physicians of the late 19th century described the progression of the disease precisely and provided differential diagnostic criteria to distinguish it from other neurological disorders with similar symptoms.

Advances in knowledge about Tay–Sachs disease have stimulated debate about the proper scope of genetic testing, and the accuracy of characterizing diseases as specific to one ethnicity. Jewish communities have been in the forefront of genetic screening and counseling for this disease.

<span class="mw-page-title-main">Hereditary cancer syndrome</span> Inherited genetic condition that predisposes a person to cancer

A hereditary cancer syndrome is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancer and may also cause early onset of these cancers. Hereditary cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors.

References

  1. 1 2 Paul DB, Spencer HG (December 2008). Keller EF (ed.). ""It's ok, we're not cousins by blood": the cousin marriage controversy in historical perspective". PLOS Biology. 6 (12): 2627–30. doi: 10.1371/journal.pbio.0060320 . PMC   2605922 . PMID   19108607.
  2. 1 2 3 4 5 6 Rosner G, Rosner S, Orr-Urtreger A (2009). "Genetic testing in Israel: an overview". Annual Review of Genomics and Human Genetics. 10: 175–92. doi:10.1146/annurev.genom.030308.111406. PMID   19453249. S2CID   8964636.
  3. 1 2 Bloch T (21 August 2009). "Sephardi Jews lack screening programs for their genetic diseases". Haaretz.
  4. 1 2 Kolata G (7 December 1993). "Nightmare or the Dream Of a New Era in Genetics?". New York Times.
  5. 1 2 3 4 Ostrer H (November 2001). "A genetic profile of contemporary Jewish populations". Nature Reviews. Genetics. 2 (11): 891–8. doi:10.1038/35098506. PMID   11715044. S2CID   3938664.
  6. 1 2 Levin M (1999). "Screening Jews and genes: a consideration of the ethics of genetic screening within the Jewish community: challenges and responses". Genetic Testing. 3 (2): 207–13. doi:10.1089/gte.1999.3.207. PMID   10464669.
  7. 1 2 Abel 2001 , p. 7
  8. Bachrach S (July 2004). "In the name of public health--Nazi racial hygiene". The New England Journal of Medicine. 351 (5): 417–20. doi:10.1056/NEJMp048136. PMID   15282346.
  9. Modell B, Darr A (March 2002). "Science and society: genetic counselling and customary consanguineous marriage". Nature Reviews. Genetics. 3 (3): 225–9. doi:10.1038/nrg754. PMID   11972160. S2CID   3329927.
  10. 1 2 Carmeli DB (September 2004). "Prevalence of Jews as subjects in genetic research: figures, explanation, and potential implications". American Journal of Medical Genetics. Part A. 130A (1): 76–83. doi:10.1002/ajmg.a.20291. PMID   15368499. S2CID   23251307.
  11. Atzmon G, Schechter C, Greiner W, Davidson D, Rennert G, Barzilai N (February 2004). "Clinical phenotype of families with longevity". Journal of the American Geriatrics Society. 52 (2): 274–7. doi:10.1111/j.1532-5415.2004.52068.x. PMID   14728640. S2CID   31740586.
  12. Atzmon G, Cho M, Cawthon RM, Budagov T, Katz M, Yang X, et al. (January 2010). "Evolution in health and medicine Sackler colloquium: Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians". Proceedings of the National Academy of Sciences of the United States of America. 107 Suppl 1 (suppl_1): 1710–7. Bibcode:2010PNAS..107.1710A. doi: 10.1073/pnas.0906191106 . PMC   2868292 . PMID   19915151.
  13. Carmi S, Hui KY, Kochav E, Liu X, Xue J, Grady F, et al. (9 September 2014). "Sequencing an Ashkenazi reference panel supports population-targeted personal genomics and illuminates Jewish and European origins". Nature Communications. 5 (1): 4835. Bibcode:2014NatCo...5.4835C. doi:10.1038/ncomms5835. PMC   4164776 . PMID   25203624.
  14. Schuster, Ruth (9 September 2014). "Ashkenazi Jews Descend From 350 People, Scientists Say". The Forward.
  15. Behar DM, Hammer MF, Garrigan D, Villems R, Bonne-Tamir B, Richards M, Gurwitz D, Rosengarten D, Kaplan M, Della Pergola S, Quintana-Murci L, Skorecki K, et al. (May 2004). "MtDNA evidence for a genetic bottleneck in the early history of the Ashkenazi Jewish population". European Journal of Human Genetics. 12 (5): 355–64. doi: 10.1038/sj.ejhg.5201156 . PMID   14722586.
  16. Wade N (4 March 2003). "Diseases Common in Ashkenazim May Be Random". New York Times.
  17. Orr-Urtreger A, Shifrin C, Rozovski U, Rosner S, Bercovich D, Gurevich T, Yagev-More H, Bar-Shira A, Giladi N, et al. (October 2007). "The LRRK2 G2019S mutation in Ashkenazi Jews with Parkinson disease: is there a gender effect?". Neurology. 69 (16): 1595–602. doi:10.1212/01.wnl.0000277637.33328.d8. PMID   17938369. S2CID   22029316.
  18. "Warsaw Breakage Syndrome". GOV.IL. Retrieved 9 April 2023.
  19. "Tay–Sachs Disease Information Page". National Institute of Neurological Disorders and Stroke. 14 February 2007. Archived from the original on 2 December 2016. Retrieved 25 May 2008.
  20. Sutton VR (June 2002). "Tay-Sachs disease screening and counseling families at risk for metabolic disease". Obstetrics and Gynecology Clinics of North America. 29 (2): 287–96. doi:10.1016/S0889-8545(01)00002-X. PMID   12108829.
  21. Buckles J (20 August 2001). "The Success Story of Gene Tests". Genome News Network, J. Craig Venter Institute. Retrieved 14 April 2008.
  22. Diaz GA, Gelb BD, Risch N, Nygaard TG, Frisch A, Cohen IJ, Miranda CS, Amaral O, Maire I, Poenaru L, Caillaud C, Weizberg M, Mistry P, Desnick RJ, et al. (June 2000). "Gaucher disease: the origins of the Ashkenazi Jewish N370S and 84GG acid beta-glucosidase mutations". American Journal of Human Genetics. 66 (6): 1821–32. doi:10.1086/302946. PMC   1378046 . PMID   10777718.'
  23. "National Gaucher Foundation". Archived from the original on 17 May 2007. Retrieved 30 May 2007.
  24. "Diseases: Mucolipidosis". Mount Sinai – Center for Jewish Genetic Diseases – Department of Human Genetics. Archived from the original on 17 February 2007.
  25. "Ashkenazi Disorders: Mendelian – Niemann–Pick disease". The Chicago Center for Jewish Genetic Disorders.
  26. Boas FE (August 2000). "Linkage to Gaucher mutations in the Ashkenazi population: effect of drift on decay of linkage disequilibrium and evidence for heterozygote selection". Blood Cells, Molecules & Diseases. 26 (4): 348–59. doi:10.1006/bcmd.2000.0314. PMID   11042036. S2CID   9665010.
  27. Harpending H, Cochran G (March 2006). "Genetic diversity and genetic burden in humans". Infection, Genetics and Evolution. 6 (2): 154–62. Bibcode:2006InfGE...6..154H. doi:10.1016/j.meegid.2005.04.002. PMID   16246638.
  28. "Ashkenazi Disorders: Mendelian – Familial dysautonomia". The Chicago Center for Jewish Genetic Disorders.
  29. about one in 30 Ashkenazi Jews carry the disease, compared to 1 in 3000 of the general population
  30. Webb, B. D.; Brandt, T.; Liu, L.; Jalas, C.; Liao, J.; Fedick, A.; Linderman, M. D.; Diaz, G. A.; Kornreich, R.; Trachtman, H.; Mehta, L.; Edelmann, L. (2014). "A founder mutation in COL4A3 causes autosomal recessive Alport syndrome in the Ashkenazi Jewish population". Clinical Genetics. 86 (2): 155–160. doi:10.1111/cge.12247. PMID   23927549. S2CID   29058203.
  31. "Ashkenazi Jews and Colorectal Cancer". The Chicago Center for Jewish Genetic Disorders.
  32. "Ashkenazi Disorders: Mendelian – Non-Classical Adrenal Hyperplasia". Jewish Genetic Disorders Organization.
  33. Shalimar A, Sharaf I, Farah Wahida I, Ruszymah BH (December 2007). "Congenital insensitivity to pain with anhydrosis in a Malaysian family: a genetic analysis" (PDF). Journal of Orthopaedic Surgery. 15 (3): 357–60. doi: 10.1177/230949900701500323 . PMID   18162686. Type III is familial dysautonomia or Riley–Day syndrome. It is multisystemic and affects mainly Ashkenazi Jews.
  34. Shugart YY, Silverberg MS, Duerr RH, Taylor KD, Wang MH, Zarfas K, et al. (March 2008). "An SNP linkage scan identifies significant Crohn's disease loci on chromosomes 13q13.3 and, in Jewish families, on 1p35.2 and 3q29". Genes and Immunity. 9 (2): 161–7. doi:10.1038/sj.gene.6364460. PMC   3858857 . PMID   18246054.
  35. "Large multicenter study suggests new genetic markers for Crohn's disease". EurekAlert!.
  36. Gutkind L, Kennedy P (10 October 2013). An Immense New Power to Heal: The Promise of Personalized Medicine. Underland Press. pp. 36–. ISBN   978-1-937163-07-5.
  37. Weissmann A, Linn S, Weltfriend S, Friedman-Birnbaum R (March 2000). "Epidemiological study of classic Kaposi's sarcoma: a retrospective review of 125 cases from Northern Israel". Journal of the European Academy of Dermatology and Venereology. 14 (2): 91–5. doi:10.1046/j.1468-3083.2000.00022.x. PMID   10972092. S2CID   22736133.
  38. "Ashkenazi Jewish Diseases". Tufts Medical Center.
  39. "Ashkenazi Disorders: Mendelian – Mucolipidosis IV". The Chicago Center for Jewish Genetic Disorders.
  40. "Myeloproliferative Neoplasms". Cancer Network. Archived from the original on 1 May 2020. Retrieved 14 September 2018.
  41. "Ashkenazi Disorders: Mendelian – Nonsyndromic Hearing Loss and Deafness, DFNB1 (Connexin 26)". The Chicago Center for Jewish Genetic Disorders.
  42. Bonifati V (October 2006). "Parkinson's disease: the LRRK2-G2019S mutation: opening a novel era in Parkinson's disease genetics". European Journal of Human Genetics. 14 (10): 1061–2. doi: 10.1038/sj.ejhg.5201695 . PMID   16835587.
  43. Lesage S, Patin E, Condroyer C, Leutenegger AL, Lohmann E, Giladi N, et al. (May 2010). "Parkinson's disease-related LRRK2 G2019S mutation results from independent mutational events in humans". Human Molecular Genetics. 19 (10): 1998–2004. doi: 10.1093/hmg/ddq081 . PMID   20197411.
  44. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, et al. (November 2004). "Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology". Neuron. 44 (4): 601–7. doi: 10.1016/j.neuron.2004.11.005 . PMID   15541309. We have previously linked families with autosomal-dominant, late-onset parkinsonism to chromosome 12p11.2-q13.1 (PARK8)...
  45. Klein J, Sato A (September 2000). "The HLA system. Second of two parts". The New England Journal of Medicine. 343 (11): 782–6. doi:10.1056/NEJM200009143431106. PMID   10984567.
  46. Efrati I (26 November 2013). "Scientists Discover Gene That Predisposes Ashkenazi Jews to Schizophrenia". Haaretz Newspaper.
  47. "Glycogen Storage Disease Type Ia Mutation Analysis (Ashkenazi Jewish)". Archived from the original on 6 March 2016. Retrieved 11 November 2011.
  48. Ahn JK, Lev D, Leshinsky-Silver E, Ginzberg M, Lerman-Sagie T (June 2003). "A new autosomal recessive syndrome with Zellweger-like manifestations". American Journal of Medical Genetics. Part A. 119A (3): 352–5. doi:10.1002/ajmg.a.20124. PMID   12784304. S2CID   26432877. A son and daughter of consanguineous Ashkenazi Jewish parents presented with phenotypic features that are typically seen in Zellweger syndrome...
  49. Marek-Yagel D, Berkun Y, Padeh S, Abu A, Reznik-Wolf H, Livneh A, Pras M, Pras E (June 2009). "Clinical disease among patients heterozygous for familial Mediterranean fever". Arthritis and Rheumatism. 60 (6): 1862–6. doi:10.1002/art.24570. PMID   19479871.
  50. "Women with G6PD Deficiency". g6pd-deficiency.org.
  51. Kaback MM (December 2000). "Population-based genetic screening for reproductive counseling: the Tay-Sachs disease model". European Journal of Pediatrics. 159 (Suppl 3): S192-5. doi:10.1007/PL00014401. PMID   11216898. S2CID   5808156.
  52. Kronn D, Jansen V, Ostrer H (April 1998). "Carrier screening for cystic fibrosis, Gaucher disease, and Tay-Sachs disease in the Ashkenazi Jewish population: the first 1000 cases at New York University Medical Center, New York, NY". Archives of Internal Medicine. 158 (7): 777–81. doi: 10.1001/archinte.158.7.777 . PMID   9554684.
  53. ACOG committee on genetics (October 2009). "ACOG Committee Opinion No. 442: Preconception and prenatal carrier screening for genetic diseases in individuals of Eastern European Jewish descent". Obstetrics and Gynecology. 114 (4): 950–3. doi:10.1097/AOG.0b013e3181bd12f4. PMID   19888064. S2CID   13136589.
  54. 1 2 Ekstein J, Katzenstein H (2001). "23. The Dor Yeshorim story: Community-based carrier screening for Tay-Sachs disease". Tay-Sachs Disease. Advances in Genetics. Vol. 44. pp. 297–310. doi:10.1016/S0065-2660(01)44087-9. ISBN   978-0-12-017644-1. PMID   11596991.
  55. Falk, Raphael (23 May 2014). "Genetic markers cannot determine Jewish descent". Frontiers in Genetics. 5: 462. doi: 10.3389/fgene.2014.00462 . PMC   4301023 . PMID   25653666.
  56. Brandt-Rauf, Paul W.; Brandt-Rauf, Sherry I. (23 May 2004). "Genetic testing in the workplace: ethical, legal, and social implications". Annual Review of Public Health. 25: 139–153. doi: 10.1146/annurev.publhealth.25.101802.123012 . PMID   15015916.

Further reading