Mesite

Last updated

Mesites
Subdesert Mesite.jpg
Subdesert mesite (Monias benschi)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Clade: Columbimorphae
Order: Mesitornithiformes
Wetmore, 1960
Family: Mesitornithidae
Wetmore, 1960
Genera

Mesitornis
Monias

Madagaskar-mesites-06.jpg
Respective ranges: brown mesite in orange, white-breasted mesite in green and subdesert mesite in blue

The mesites (Mesitornithidae) are a family of birds that are part of a clade (Columbimorphae) that include Columbiformes and Pterocliformes. [1] They are smallish flightless or near flightless birds endemic to Madagascar. They are the only family with more than two species in which every species is threatened (all three are listed as vulnerable).[ vague ][ clarification needed ]

Contents

Description

The mesites are forest and scrubland birds that feed on insects and seeds; brown and white-breasted mesites forage on the ground, gleaning insects from underneath leaves as well as low vegetation. The subdesert mesite uses its long bill to probe in the soil. Other birds, such as drongos and flycatchers, will follow mesites to catch any insects they flush out or miss. Mesites are vocal birds, with calls similar to a passerine song, used for territorial defence. Two or three white eggs are laid in a stick-built nest located in a bush or on a low branch. [2] The Mesitornis species are monogamous [3] while Monias benschi is polygamous and, unlike the other two, shows significant sexual dichromatism.

Systematics

There are two genera, Mesitornis (2 species) and Monias (subdesert mesite). [4] [5]

ImageGenusSpecies
Subdesert Mesite.jpg Monias Oustalet & Grandidier, 1903
White-breasted Mesite - Ankarafantsika - Madagascar S4E9441 (15297364032).jpg Mesitornis Bonaparte, 1855 [MesitesGeoffroy, 1838 non Schoenherr, 1838; MesoenasReichenbach, 1861]

Historically, mesites' phylogenetic relationships were not very clear; they have been allied with the Gruiformes, [6] Turniciformes [7] and Columbiformes. [8]

Recent phylogenomic studies support Pterocliformes (sandgrouse) as the sister group of mesites [1] [9] [10] while some more recent studies place this clade with another clade constituted of Columbiformes and Cuculiformes (cuckoos). [11]

Columbiformes (pigeons)

Cuculiformes (cuckoos)

Pterocliformes (sandgrouses)

Mesitornithiformes (mesites)

Phylogenetic relationship of the mesites within Neoaves. [11]

Related Research Articles

Near passerines and higher land-bird assemblage are terms of traditional, pre-cladistic taxonomy that have often been given to tree-dwelling birds or those most often believed to be related to the true passerines owing to morphological and ecological similarities; the group corresponds to some extent with the Anomalogonatae of Alfred Henry Garrod.

<span class="mw-page-title-main">Pelecaniformes</span> Order of birds

The Pelecaniformes are an order of medium-sized and large waterbirds found worldwide. As traditionally—but erroneously—defined, they encompass all birds that have feet with all four toes webbed. Hence, they were formerly also known by such names as totipalmates or steganopodes. Most have a bare throat patch, and the nostrils have evolved into dysfunctional slits, forcing them to breathe through their mouths. They also have a pectinate nail on their longest toe. This is shaped like a comb and is used to brush out and separate their feathers. They feed on fish, squid, or similar marine life. Nesting is colonial, but individual birds are monogamous. The young are altricial, hatching from the egg helpless and naked in most. They lack a brood patch.

<span class="mw-page-title-main">Neoaves</span> Clade of birds

Neoaves is a clade that consists of all modern birds with the exception of Palaeognathae and Galloanserae. Almost 95% of the roughly 10,000 known species of extant birds belong to the Neoaves.

<span class="mw-page-title-main">Aequornithes</span> Clade of birds

Aequornithes, or core water birds, are defined as "the least inclusive clade containing Gaviidae and Phalacrocoracidae".

<span class="mw-page-title-main">Falconiformes</span> Order of birds

The order Falconiformes is represented by the extant family Falconidae and a handful of enigmatic Paleogene species. Traditionally, the other bird of prey families Cathartidae, Sagittariidae (secretarybird), Pandionidae (ospreys), Accipitridae (hawks) were classified in Falconiformes. A variety of comparative genome analysis published since 2008, however, found that falcons are part of a clade of birds called Australaves, which also includes seriemas, parrots and passerines. Within Australaves falcons are more closely related to the parrot-passerine clade (Psittacopasserae), which together they form the clade Eufalconimorphae. The hawks and vultures occupy a basal branch in the clade Afroaves in their own clade Accipitrimorphae, closer to owls and woodpeckers.

<span class="mw-page-title-main">Suliformes</span> Order of birds

The order Suliformes is an order recognised by the International Ornithologist's Union. In regard to the recent evidence that the traditional Pelecaniformes is polyphyletic, it has been suggested that the group be divided to reflect the true evolutionary relationships; a 2017 study indicated that they are most closely related to Otidiformes (bustards) and Ciconiiformes (storks).

<span class="mw-page-title-main">Strisores</span> Clade of birds

Strisores, sometimes called nightbirds, is a clade of birds that includes the living families and orders Caprimulgidae, Nyctibiidae (potoos), Steatornithidae (oilbirds), Podargidae (frogmouths), Apodiformes, as well as the Aegotheliformes (owlet-nightjars) whose distinctness was only recently realized. The Apodiformes and the Aegotheliformes form the Daedalornithes.

<span class="mw-page-title-main">Telluraves</span> Clade of birds

Telluraves is a recently defined clade of birds defined by their arboreality. Based on most recent genetic studies, the clade unites a variety of bird groups, including the australavians as well as the afroavians. They appear to be the sister group of the Phaethoquornithes.

<span class="mw-page-title-main">Columbea</span> Clade of birds

Columbea is a clade suggested by genome analysis that contains Columbiformes, Pteroclidae (sandgrouse), Mesitornithidae (mesites) and Mirandornithes. Until their recent placement as the sister taxon to Passerea, in the last decade various genetic analysis found them to be in the obsolete clade Metaves.

<span class="mw-page-title-main">Passerea</span> Clade of birds

Passerea is a clade of neoavian birds that was proposed by Jarvis et al. (2014). Their genomic analysis recovered two major clades within Neoaves, Passerea and Columbea, and concluded that both clades appear to have many ecologically driven convergent traits.

<span class="mw-page-title-main">Eurypygimorphae</span> Clade of birds

Eurypygimorphae or Phaethontimorphae is a clade of birds that contains the orders Phaethontiformes (tropicbirds) and Eurypygiformes recovered by genome analysis. The relationship was first identified in 2013 based on their nuclear genes. Historically these birds were placed at different parts of the tree, with tropicbirds in Pelecaniformes and the kagu and sunbittern in Gruiformes. Some genetic analyses have placed the eurypygimorph taxa in the controversial and obsolete clade Metaves, with uncertain placement within that group. More recent molecular studies support their grouping together in Eurypygimorphae, which is usually recovered as the sister taxon to Aequornithes within Ardeae.

<span class="mw-page-title-main">Otidimorphae</span> Clade of birds

Otidimorphae is a clade of birds that contains the orders Cuculiformes (cuckoos), Musophagiformes (turacos), and Otidiformes (bustards) identified in 2014 by genome analysis. While the bustards seem to be related to the turacos, other genetic studies have found the cuckoos to be closer to the bustards than the turacos are.

<span class="mw-page-title-main">Phaethoquornithes</span> Taxon of birds

Phaethoquornithes is a clade of birds that contains Eurypygimorphae and Aequornithes, which was first recovered by genome analysis in 2014. Members of Eurypygimorphae were originally classified in the obsolete group Metaves, and Aequornithes were classified as the sister taxon to Musophagiformes or Gruiformes.

<span class="mw-page-title-main">Coraciimorphae</span> Clade of birds

Coraciimorphae is a clade of birds that contains the order Coliiformes (mousebirds) and the clade Cavitaves. The name however was coined in the 1990s by Sibley and Ahlquist based on their DNA-DNA hybridization studies conducted in the late 1970s and throughout the 1980s. However their Coraciimorphae only contains Trogoniformes and Coraciiformes.

<span class="mw-page-title-main">Eucavitaves</span> Clade of birds

Eucavitaves is a clade that contains the order Trogoniformes (trogons) and the clade Picocoraciae. The name refers to the fact that the majority of them nest in cavities.

<span class="mw-page-title-main">Cavitaves</span> Clade of birds

Cavitaves is a clade that contains the order Leptosomiformes and the clade Eucavitaves. The name refers to the fact that the majority of them nest in cavities.

<span class="mw-page-title-main">Picocoraciae</span> Clade of birds

Picocoraciae is a clade that contains the order Bucerotiformes and the clade Picodynastornithes supported by various genetic analysis and morphological studies. While these studies supported a sister grouping of Coraciiformes and Piciformes, a large scale, sparse supermatrix has suggested alternative sister relationship between Bucerotiformes and Piciformes instead.

<span class="mw-page-title-main">Columbimorphae</span> Clade of birds

Columbimorphae is a clade discovered by genome analysis that includes birds of the orders Columbiformes, Pterocliformes (sandgrouse), and Mesitornithiformes (mesites). Previous analyses had also recovered this grouping, although the exact relationships differed. Some studies indicated a sister relationship between sandgrouse and pigeons while other studies favored a sister grouping of mesites and sandgrouse instead.

<span class="mw-page-title-main">Picodynastornithes</span> Clade of birds

Picodynastornithes is a clade that contains the orders Coraciiformes and Piciformes. This grouping also has current and historical support from molecular and morphological studies.

<span class="mw-page-title-main">Columbaves</span> Clade of birds

Columbaves is a clade that contains Columbimorphae and Otidimorphae discovered by genomic analysis by Prum et al. (2015). This conflicts with the Columbea and Otidae hypotheses which Mirandornithes are the sister taxon to Columbimorphae and Cypselomorphae the sister taxon to Otidimorphae, respectively, found by Jarvis et al. (2014). Neither hypothesis supports the two subdivisions of Metaves and Coronoaves as previous studies had found.

References

  1. 1 2 Jarvis, E.D.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. PMC   4405904 . PMID   25504713.
  2. Archibald, George W. (1991). Forshaw, Joseph (ed.). Encyclopaedia of Animals: Birds. London: Merehurst Press. pp. 100–101. ISBN   978-1-85391-186-6.
  3. Gamero, Anna; Székely, Tamás; Kappeler, Peter M. (2014). "Delayed juvenile dispersal and monogamy, but no cooperative breeding in white-breasted mesites (Mesitornis variegatus)". Behavioral Ecology and Sociobiology. 68: 73–83. doi:10.1007/s00265-013-1624-4. S2CID   17145658.
  4. IOC World Bird List v6.3 . "IOC Names File Plus 6.3" . Retrieved 30 August 2016.
  5. "Part 7- Vertebrates". Collection of genus-group names in a systematic arrangement. Archived from the original on 5 October 2016. Retrieved 30 June 2016.
  6. Sibley, Charles; Jon Edward Ahlquist (1990). Phylogeny and classification of birds. New Haven: Yale University Press. ISBN   0-300-04085-7.
  7. Livezey, Bradley C.; Zusi, RL (January 2007). "Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion". Zoological Journal of the Linnean Society . 149 (1): 1–95. doi:10.1111/j.1096-3642.2006.00293.x. PMC   2517308 . PMID   18784798.
  8. Hackett, Shannon J.; Kimball, Rebecca T.; Reddy, Sushma; Bowie, Rauri C. K.; Braun, Edward L.; Braun, Michael J.; Chojnowski, Jena L.; Cox, W. Andrew; Han, Kin-Lan; Harshman, John; Huddleston, Christopher J.; Marks, Ben D.; Miglia, Kathleen J.; Moore, William S.; Sheldon, Frederick H.; Steadman, David W.; Witt, Christopher C.; Yuri, Tamaki (2008). "A Phylogenomic Study of Birds Reveals Their Evolutionary History". Science. 320 (5884): 1763–1768. Bibcode:2008Sci...320.1763H. doi:10.1126/science.1157704. PMID   18583609. S2CID   6472805.
  9. Fain, Matthew G.; Houde, Peter (2004). "Parallel radiations in the primary clades of birds". Evolution . 58 (11): 2558–2573. doi:10.1554/04-235. PMID   15612298. S2CID   1296408.
  10. Yuri, T.; et al. (2013). "Parsimony and Model-Based Analyses of Indels in Avian Nuclear Genes Reveal Congruent and Incongruent Phylogenetic Signals". Biology. 2 (1): 419–444. doi: 10.3390/biology2010419 . PMC   4009869 . PMID   24832669.
  11. 1 2 H Kuhl, C Frankl-Vilches, A Bakker, G Mayr, G Nikolaus, S T Boerno, S Klages, B Timmermann, M Gahr (2020) An unbiased molecular approach using 3’UTRs resolves the avian family-level tree of life. Molecular Biology and Evolution, https://doi.org/10.1093/molbev/msaa191