Microperimetry

Last updated

Microperimetry, sometimes called fundus-controlled perimetry, [1] is a type of visual field test [2] which uses one of several technologies to create a "retinal sensitivity map" of the quantity of light perceived in specific parts of the retina [3] in people who have lost the ability to fixate on an object or light source. The main difference with traditional perimetry instruments is that, microperimetry includes a system to image the retina and an eye tracker to compensate eye movements during visual field testing.

Contents

Usage

Macular degeneration Intermediate age related macular degeneration.jpg
Macular degeneration

Visual field testing is widely used to monitor pathologies affecting the periphery of vision such as glaucoma. [4] During a conventional test, patients are asked to look steady (fixate) at a visual target, while light stimuli are projected at varying intensities in different retinal locations. This process is not, however, considered accurate in the evaluation of pathologies affecting the central part of the retina (macula and fovea centralis) as patients with these pathologies are often unable to fixate reliably. By contrast, fundus perimetry, produces reliable results even in patients with unstable or eccentric fixation., [5] or advance macular degeneration.

When central vision is compromised, as in the case of macular scotoma, patients develop an eccentric or extra-foveal vision, [6] normally with unstable fixation. [7] The retinal area used by eccentric viewers to substitute the foveal vision is known as the Preferred Retinal Locus (PRL) [8] In Microperimetry systems, the fundus (eye) is imaged in real time, while an eye tracker compensates eye movements during stimuli projection, allowing correct matching between expected and projected stimulus position onto the retina. Simultaneously, the eye tracker plots the retinal movement during fixation attempt defining the PRL zone as well as fixation stability. [9] Some microperimetry instruments calculate 2 different PRL zones during the examination. [10] To create the fundus image an infrared telecamera is used, as in the case of the "Nidek-MP1", or a Scanning Laser Ophthalmoscope (SLO), [11] as in the case of the "Centervue-MAIA".

Microperimetry with Biofeedback

In patients with central vision loss, microperimetry experts are able to analyse the eccentric retina in order to find zones with good retinal sensitivity. Once the best retinal area is selected, patients are asked to move their gaze towards that direction, while audio signals guide them to the desired target. This process is called biofeedback, and is based on the theory of brain plasticity. [12] With several training sessions, some patients are able to gain better use of their peripheral vision. [4]

Related Research Articles

<span class="mw-page-title-main">Peripheral vision</span> Area of ones field of vision outside of the point of fixation

Peripheral vision, or indirect vision, is vision as it occurs outside the point of fixation, i.e. away from the center of gaze or, when viewed at large angles, in the "corner of one's eye". The vast majority of the area in the visual field is included in the notion of peripheral vision. "Far peripheral" vision refers to the area at the edges of the visual field, "mid-peripheral" vision refers to medium eccentricities, and "near-peripheral", sometimes referred to as "para-central" vision, exists adjacent to the center of gaze.

The National Eye Institute (NEI) is part of the U.S. National Institutes of Health (NIH), an agency of the U.S. Department of Health and Human Services. The mission of NEI is "to eliminate vision loss and improve quality of life through vision research." NEI consists of two major branches for research: an extramural branch that funds studies outside NIH and an intramural branch that funds research on the NIH campus in Bethesda, Maryland. Most of the NEI budget funds extramural research.

<span class="mw-page-title-main">Macular edema</span> Medical condition

Macular edema occurs when fluid and protein deposits collect on or under the macula of the eye and causes it to thicken and swell (edema). The swelling may distort a person's central vision, because the macula holds tightly packed cones that provide sharp, clear, central vision to enable a person to see detail, form, and color that is directly in the centre of the field of view.

<span class="mw-page-title-main">Scanning laser ophthalmoscopy</span>

Scanning laser ophthalmoscopy (SLO) is a method of examination of the eye. It uses the technique of confocal laser scanning microscopy for diagnostic imaging of the retina or cornea of the human eye.

<span class="mw-page-title-main">Macular degeneration</span> Medical condition associated with vision loss

Macular degeneration, also known as age-related macular degeneration, is a medical condition which may result in blurred or no vision in the center of the visual field. Early on there are often no symptoms. Over time, however, some people experience a gradual worsening of vision that may affect one or both eyes. While it does not result in complete blindness, loss of central vision can make it hard to recognize faces, drive, read, or perform other activities of daily life. Visual hallucinations may also occur.

The visual field is "that portion of space in which objects are visible at the same moment during steady fixation of the gaze in one direction"; in ophthalmology and neurology the emphasis is on the structure inside the visual field and it is then considered “the field of functional capacity obtained and recorded by means of perimetry”.

<span class="mw-page-title-main">Cone dystrophy</span> Medical condition

A cone dystrophy is an inherited ocular disorder characterized by the loss of cone cells, the photoreceptors responsible for both central and color vision.

<span class="mw-page-title-main">Visual field test</span> Eye examination that can detect dysfunction in central and peripheral vision

A visual field test is an eye examination that can detect dysfunction in central and peripheral vision which may be caused by various medical conditions such as glaucoma, stroke, pituitary disease, brain tumours or other neurological deficits. Visual field testing can be performed clinically by keeping the subject's gaze fixed while presenting objects at various places within their visual field. Simple manual equipment can be used such as in the tangent screen test or the Amsler grid. When dedicated machinery is used it is called a perimeter.

Stargardt disease is the most common inherited single-gene retinal disease. In terms of the first description of the disease, it follows an autosomal recessive inheritance pattern, which has been later linked to bi-allelic ABCA4 gene variants (STGD1). However, there are Stargardt-like diseases with mimicking phenotypes that are referred to as STGD3 and STGD4, and have a autosomal dominant inheritance due to defects with ELOVL4 or PROM1 genes, respectively. It is characterized by macular degeneration that begins in childhood, adolescence or adulthood, resulting in progressive loss of vision.

<span class="mw-page-title-main">Optic disc drusen</span> Medical condition

Optic disc drusen (ODD) are globules of mucoproteins and mucopolysaccharides that progressively calcify in the optic disc. They are thought to be the remnants of the axonal transport system of degenerated retinal ganglion cells. ODD have also been referred to as congenitally elevated or anomalous discs, pseudopapilledema, pseudoneuritis, buried disc drusen, and disc hyaline bodies.

<span class="mw-page-title-main">Choroidal neovascularization</span> Creation of new blood vessels in the choroid layer of the eye

Choroidal neovascularization (CNV) is the creation of new blood vessels in the choroid layer of the eye. Choroidal neovascularization is a common cause of neovascular degenerative maculopathy commonly exacerbated by extreme myopia, malignant myopic degeneration, or age-related developments.

<span class="mw-page-title-main">Intraocular hemorrhage</span> Medical condition

Intraocular hemorrhage is bleeding inside the eye. Bleeding can occur from any structure of the eye where there is vasculature or blood flow, including the anterior chamber, vitreous cavity, retina, choroid, suprachoroidal space, or optic disc.

Preferential hyperacuity perimetry (PHP) is a psychophysical test used to identify and quantify visual abnormalities such as metamorphopsia and scotoma. It is a type of perimetry.

<span class="mw-page-title-main">Humphrey visual field analyser</span> Tool used by eye care professionals

Humphrey field analyser (HFA) is a tool for measuring the human visual field that is commonly used by optometrists, orthoptists and ophthalmologists, particularly for detecting monocular visual field.

Joan Whitten Miller is a Canadian-American ophthalmologist and scientist who has made notable contributions to the treatment and understanding of eye disorders. She is credited for developing photodynamic therapy (PDT) with verteporfin (Visudyne), the first pharmacologic therapy for retinal disease. She also co-discovered the role of vascular endothelial growth factor (VEGF) in eye disease and demonstrated the therapeutic potential of VEGF inhibitors, forming the scientific basis of anti-VEGF therapy for age-related macular degeneration (AMD), diabetic retinopathy, and related conditions.

Photic retinopathy is damage to the eye's retina, particularly the macula, from prolonged exposure to solar radiation or other bright light, e.g., lasers or arc welders. The term includes solar, laser, and welder's retinopathy and is synonymous with retinal phototoxicity. It usually occurs due to staring at the Sun, watching a solar eclipse, or viewing an ultraviolet, Illuminant D65, or other bright light.[1]

Geographic atrophy (GA), also known as atrophic age-related macular degeneration (AMD) or advanced dry AMD, is an advanced form of age-related macular degeneration that can result in the progressive and irreversible loss of retinal tissue (photoreceptors, retinal pigment epithelium, choriocapillaris) which can lead to a loss of visual function over time. It is estimated that GA affects over 5 million people worldwide and approximately 1 million patients in the US, which is similar to the prevalence of neovascular (wet) AMD, the other advanced form of the disease.

Occult macular dystrophy (OMD) is a rare inherited degradation of the retina, characterized by progressive loss of function in the most sensitive part of the central retina (macula), the location of the highest concentration of light-sensitive cells (photoreceptors) but presenting no visible abnormality. "Occult" refers to the degradation in the fundus being difficult to discern. The disorder is called "dystrophy" instead of "degradation" to distinguish its genetic origin from other causes, such as age. OMD was first reported by Y. Miyake et al. in 1989.

<span class="mw-page-title-main">Visual pathway lesions</span> Overview about the lesions of visual pathways

The visual pathway consists of structures that carry visual information from the retina to the brain. Lesions in that pathway cause a variety of visual field defects. In the visual system of human eye, the visual information processed by retinal photoreceptor cells travel in the following way:
Retina→Optic nerve→Optic chiasma →Optic tract→Lateral geniculate body→Optic radiation→Primary visual cortex

Photostress recovery time (PSRT) is the time taken for visual acuity to return to normal levels after the retina has been bleached by a bright light source. Photostress recovery time measurement procedure is known as photostress test. Normal recovery time is about 15–30 seconds.

References

  1. Pfau M, Jolly JK, Wu Z, Denniss J, Lad EM, Guymer RH, Fleckenstein M, Holz FG, Schmitz-Valckenberg S (May 2021). "Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials". Prog Retin Eye Res. 82: 100907. doi: 10.1016/j.preteyeres.2020.100907 . PMID   33022378. S2CID   222119567.
  2. Glaucoma Diagnosis, Structure and function, pp. 83-92. Edited by Robert N. Weinreb and Erik L. Greve. 2004 Kugler Publications, The Hague, The Netherlands
  3. Visual Fields, pp. 1-5. Edited by Oxford University Press. David B. Henson.
  4. 1 2 Markowitz, Samuel N.; Reyes, Sophia V. (2013-10-01). "Microperimetry and clinical practice: an evidence-based review". Canadian Journal of Ophthalmology. 48 (5): 350–357. doi:10.1016/j.jcjo.2012.03.004. ISSN   0008-4182. PMID   24093179.
  5. Rohrschneider K.; Bultmann S.; Springer C. (2008). "Use of fundus perimetry (microperimetry) to quantify macular sensitivity". Progress in Retinal and Eye Research. 27 (5): 536–548. doi:10.1016/j.preteyeres.2008.07.003. PMID   18723109. S2CID   11197022.
  6. Schuchard R. A. (2005). "Preferred retinal loci and macular scotoma characteristics in patients with age-related macular degeneration". Can J Ophthalmol. 40 (3): 303–12. doi:10.1016/s0008-4182(05)80073-0. PMID   15947800.
  7. Fujii GY, de Juan E, Sunness J, Humayun MS, Pieramici DJ, Chang TS (2002). "Patient selection for macular translocation surgery using the scanning laser ophthalmoscope". Ophthalmology. 109 (9): 1737–1744. doi:10.1016/S0161-6420(02)01120-X. PMID   12208725.
  8. Schacknow, Paul N.; Samples, John R. (2010-06-10). The Glaucoma Book: A Practical, Evidence-Based Approach to Patient Care. Springer. ISBN   9780387767000.
  9. Midena E.; Radin P. P.; Pilotto E.; Ghirlando A.; Convento E.; Varano M. (2004). "Fixation pattern and macular sensitivity in eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. A microperimetry study". Semin. Ophthalmol. 19 (1–2): 55–61. doi:10.1080/08820530490882896. PMID   15590535. S2CID   969966.
  10. Morales M. U.; Saker S.; Mehta R. L.; Rubinstein M.; Amoaku W. M. (2013). "Preferred retinal locus profile during prolonged fixation attempts". Can J Ophthalmol. 48 (5): 368–374. doi:10.1016/j.jcjo.2013.05.022. PMID   24093182.
  11. Vujosevic S.; Smolek M. K.; Lebow K. A.; Notaroberto N.; Pallikaris A.; Casciano M. (2011). "Detection of macular function changes in early (AREDS 2) and intermediate (AREDS 3) age-related macular degeneration". Ophthalmologica. 225 (3): 155–160. doi:10.1159/000320340. PMID   21150232. S2CID   31494742.
  12. Tarita-Nistor L.; Gonzalez E. G.; Markowitz S. N.; Steinbach M. J. (2009). "Plasticity of fixation in patients with central vision loss". Vis. Neurosci. 26 (5–6): 487–494. doi:10.1017/s0952523809990265. PMID   20003597. S2CID   22180347.

Further reading