Muramyl ligase

Last updated
Mur_ligase
Identifiers
SymbolMur_ligase
Pfam PF01225
Pfam clan CL0063
InterPro IPR000713
PROSITE PDOC00773
SCOP2 1uag / SCOPe / SUPFAM
OPM superfamily 350
OPM protein 1p31
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

The bacterial cell wall provides strength and rigidity to counteract internal osmotic pressure, and protection against the environment. The peptidoglycan layer gives the cell wall its strength, and helps maintain the overall shape of the cell. The basic peptidoglycan structure of both Gram-positive and Gram-negative bacteria comprises a sheet of glycan chains connected by short cross-linking polypeptides. Biosynthesis of peptidoglycan is a multi-step (11-12 steps) process comprising three main stages:

  1. formation of UDP-N-acetylmuramic acid (UDPMurNAc) from N-acetylglucosamine (GlcNAc).
  2. addition of a short polypeptide chain to the UDPMurNAc.
  3. addition of a second GlcNAc to the disaccharide-pentapeptide building block and transport of this unit through the cytoplasmic membrane and incorporation into the growing peptidoglycan layer.

Stage two involves four key Mur ligase enzymes: MurC, [1] MurD, [2] MurE (EC) [3] and MurF (EC). [4] These four Mur ligases are responsible for the successive additions of L-alanine, D-glutamate, meso-diaminopimelate or L-lysine, and D-alanyl-D-alanine to UDP-N-acetylmuramic acid. All four Mur ligases are topologically similar to one another, even though they display low sequence identity. They are each composed of three domains: an N-terminal Rossmann-fold domain responsible for binding the UDPMurNAc substrate; a central domain (similar to ATP-binding domains of several ATPases and GTPases); and a C-terminal domain (similar to dihydrofolate reductase fold) that appears to be associated with binding the incoming amino acid. The conserved sequence motifs found in the four Mur enzymes also map to other members of the Mur ligase family, including folylpolyglutamate synthetase, cyanophycin synthetase and the capB enzyme from Bacillales. [5]

This family includes UDP-N-acetylmuramate-L-alanine ligase (MurC), UDP-N-acetylmuramoylalanyl-D-glutamate-2,6-diaminopimelate ligase (MurE), and UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase (MurF). This entry also includes folylpolyglutamate synthase that transfers glutamate to folylpolyglutamate and cyanophycin synthetase that catalyses the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). [6]

Related Research Articles

Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like peptidoglycan layer outside the plasma membrane, the rigid cell wall characteristic of most bacteria. The sugar component consists of alternating residues of β-(1,4) linked N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). Attached to the N-acetylmuramic acid is an oligopeptide chain made of three to five amino acids. The peptide chain can be cross-linked to the peptide chain of another strand forming the 3D mesh-like layer. Peptidoglycan serves a structural role in the bacterial cell wall, giving structural strength, as well as counteracting the osmotic pressure of the cytoplasm. This repetitive linking results in a dense peptidoglycan layer which is critical for maintaining cell form and withstanding high osmotic pressures, and it is regularly replaced by peptidoglycan production. Peptidoglycan hydrolysis and synthesis are two processes that must occur in order for cells to grow and multiply, a technique carried out in three stages: clipping of current material, insertion of new material, and re-crosslinking of existing material to new material.

<span class="mw-page-title-main">Teichoic acid</span>

Teichoic acids are bacterial copolymers of glycerol phosphate or ribitol phosphate and carbohydrates linked via phosphodiester bonds.

<i>N</i>-Acetylmuramic acid Chemical compound

N-Acetylmuramic acid is an organic compound with the chemical formula C
11
H
19
NO
8
. It is a monomer of peptidoglycan in most bacterial cell walls, which is built from alternating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid, cross-linked by oligopeptides at the lactic acid residue of MurNAc.

<span class="mw-page-title-main">Pseudopeptidoglycan</span>

Pseudopeptidoglycan is a major cell wall component of some Archaea that differs from bacterial peptidoglycan in chemical structure, but resembles bacterial peptidoglycan in function and physical structure. Pseudopeptidoglycan, in general, is only present in a few methanogenic archaea. The basic components are N-acetylglucosamine and N-acetyltalosaminuronic acid, which are linked by β-1,3-glycosidic bonds.

In enzymology, glutamate racemase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Diaminopimelate decarboxylase</span>

The enzyme diaminopimelate decarboxylase (EC 4.1.1.20) catalyzes the cleavage of carbon-carbon bonds in meso 2,6 diaminoheptanedioate to produce CO2 and L-lysine, the essential amino acid. It employs the cofactor pyridoxal phosphate, also known as PLP, which participates in numerous enzymatic transamination, decarboxylation and deamination reactions.

In enzymology, an alanine—tRNA ligase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">D-alanine—D-alanine ligase</span> Enzyme belonging to the ligase family

In enzymology, a D-alanine—D-alanine ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a UDP-N-acetylmuramate—L-alanine ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a UDP-N-acetylmuramoyl-L-alanine—D-glutamate ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—L-lysine ligase is an enzyme that catalyzes the chemical reaction

In enzymology, a UDP-N-acetylmuramoyl-tripeptide—D-alanyl-D-alanine ligase is an enzyme that catalyzes the chemical reaction

In enzymology, an UDP-N-acetylmuramoylpentapeptide-lysine N6-alanyltransferase (EC 2.3.2.10) is an enzyme that catalyzes the chemical reaction

In enzymology, a phospho-N-acetylmuramoyl-pentapeptide-transferase is an enzyme that catalyzes the chemical reaction

Muramoylpentapeptide carboxypeptidase is an enzyme. This enzyme catalyses the following chemical reaction.

UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—2,6-diaminopimelate ligase is an enzyme with systematic name UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-2,6-diaminoheptanedioate gamma-ligase (ADP-forming). This enzyme catalyses the following chemical reaction

Cyanophycin synthase (L-aspartate-adding) is an enzyme with systematic name cyanophycin:L-aspartate ligase (ADP-forming). This enzyme catalyses the following chemical reaction

Cyanophycin synthase (L-arginine-adding) is an enzyme with systematic name cyanophycin:L-arginine ligase (ADP-forming). This enzyme catalyses the following chemical reaction:

UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—D-lysine ligase is an enzyme with systematic name UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:D-lysine alpha-ligase (ADP-forming). This enzyme catalyses the following chemical reaction

References

  1. Deva T, Baker EN, Squire CJ, Smith CA (December 2006). "Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine ligase (MurC)". Acta Crystallogr. D. 62 (Pt 12): 1466–74. doi:10.1107/S0907444906038376. PMID   17139082.
  2. Perdih A, Kotnik M, Hodoscek M, Solmajer T (July 2007). "Targeted molecular dynamics simulation studies of binding and conformational changes in E. coli MurD". Proteins. 68 (1): 243–54. doi:10.1002/prot.21374. PMID   17427948. S2CID   11577329.
  3. Boniface A, Bouhss A, Mengin-Lecreulx D, Blanot D (June 2006). "The MurE synthetase from Thermotoga maritima is endowed with an unusual D-lysine adding activity". J. Biol. Chem. 281 (23): 15680–6. doi: 10.1074/jbc.M506311200 . PMID   16595662.
  4. Longenecker KL, Stamper GF, Hajduk PJ, Fry EH, Jakob CG, Harlan JE, Edalji R, Bartley DM, Walter KA, Solomon LR, Holzman TF, Gu YG, Lerner CG, Beutel BA, Stoll VS (December 2005). "Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure". Protein Sci. 14 (12): 3039–47. doi:10.1110/ps.051604805. PMC   2253247 . PMID   16322581.
  5. Smith CA (September 2006). "Structure, function and dynamics in the mur family of bacterial cell wall ligases". J. Mol. Biol. 362 (4): 640–55. doi:10.1016/j.jmb.2006.07.066. PMID   16934839.
  6. Ziegler K, Diener A, Herpin C, Richter R, Deutzmann R, Lockau W (May 1998). "Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin)". Eur. J. Biochem. 254 (1): 154–9. doi: 10.1046/j.1432-1327.1998.2540154.x . PMID   9652408.
This article incorporates text from the public domain Pfam and InterPro: IPR000713