Nanoflares

Last updated
"This false-color temperature map shows solar active region AR10923, observed close to center of the sun's disk. Blue regions indicate plasma near 10 million degrees K." Credit: Reale, et al. (2009), NASA. 378877main Nanoflares lg.jpg
"This false-color temperature map shows solar active region AR10923, observed close to center of the sun's disk. Blue regions indicate plasma near 10 million degrees K." Credit: Reale, et al. (2009), NASA.

A nanoflare is a very small episodic heating event which happens in the corona, the external atmosphere of the Sun.

Contents

The hypothesis of small impulsive heating events as a possible explanation of the coronal heating was first suggested by Thomas Gold [2] and then later developed and dubbed "nanoflares" by Eugene Parker. [3]

According to Parker a nanoflare arises from an event of magnetic reconnection which converts the energy stored in the solar magnetic field into the motion of the plasma. The plasma motion (thought as fluid motion) occurs at length-scales so small that it is soon damped by the turbulence and then by the viscosity. In such a way the energy is quickly converted into heat, and conducted by the free electrons along the magnetic field lines closer to the place where the nanoflare switches on. In order to heat a region of very high X-ray emission, over an area 1" x 1", a nanoflare of 1017 J should happen every 20 seconds, and 1000 nanoflares per second should occur in a large active region of 105 x 105 km2. On the basis of this theory, the emission coming from a big flare could be caused by a series of nanoflares, not observable individually.

The nanoflare model has long suffered from a lack of observational evidence. Simulations predict that nanoflares produce a faint, hot (~10 MK) component of the emission measure. [4] Unfortunately, current instruments, such as the Extreme-Ultraviolet Imaging Spectrometer on board Hinode, are not adequately sensitive to the range in which this faint emission occurs, making a confident detection impossible. [5] Recent evidence from the EUNIS sounding rocket has provided some spectral evidence for non-flaring plasma at temperatures near 9 MK in active region cores. [6]

Nanoflares and coronal activity

Typical flaring coronal loops observed by TRACE in the EUV rays Solar flare (TRACE).gif
Typical flaring coronal loops observed by TRACE in the EUV rays

Telescopic observations suggest that the solar magnetic field, which theoretically is "frozen" into the gas of the plasma in the photosphere, expands into roughly semicircular structures in the corona. These coronal loops, which can be seen in the EUV and X-ray images (see the figure on the left), often confine very hot plasmas, with emissions characteristic of temperature of a one to a few million degrees.

Many flux tubes are relatively stable as seen in soft X-ray images, emitting at steady rate. However flickerings, brightenings, small explosions, bright points, flares and mass eruptions are observed very frequently, especially in active regions. These macroscopic signs of solar activity are considered by astrophysicists as the phenomenology related to events of relaxation of stressed magnetic fields, during which part of the energy they have stored is released ultimately into particle kinetic energy (heating); this could be via current dissipation, Joule effect, or any of several non-thermal plasma effects.

Theoretical work often appeals to the concept of magnetic reconnection to explain these outbursts. Rather than a single large-scale episode of such a process, though, modern thinking suggests that a multitude of small-scale versions reconnection, cascading together, might be a better description. The theory of nanoflares then supposes that these events of magnetic reconnection, occurring at nearly the same time on small length-scales wherever in the corona, are very numerous, each providing an imperceptibly small fraction of the total energy required in a macroscopic event. These nanoflares might themselves resemble very tiny flares, close one to each other, both in time and in space, effectively heating the corona and underlying many of the phenomena of solar magnetic activity.

Episodic heating often observed in active regions, including major events such as flares and coronal mass ejections could be provoked by cascade effects, similar to those described by the mathematical theories of catastrophes. In the hypothesis that the solar corona is in a state of self-organized criticality, the stressing of the magnetic field should be enhanced until a small perturbation switches on many small instabilities, happening together as it occurs in avalanches.

One of the experimental results often cited in supporting the nanoflare theory is the fact that the distribution of the number of flares observed in the hard X-rays is a function of their energy, following a power law with negative spectral index. A sufficiently large power-law index would allow the smallest events to dominate the total energy. In the energy range of normal flares, the index has a value of approximately -1.8 [7] [8] [9] . [10] This falls short of the power-law index which would be required order to maintain the heating of the solar corona via the nanoflare hypothesis, . [11] A power-law index greater than -2 is required to maintain the temperature observed in the corona.

Nanoflares and coronal heating

Solar Magnetic Field Lines Solar Magnetic Field Lines.jpg
Solar Magnetic Field Lines

The problem of coronal heating is still unsolved, although research is ongoing and other evidence of nanoflares has been found in the solar corona. The amount of energy stored in the solar magnetic field can account for the coronal heating necessary to maintain the plasma at this temperature and to balance coronal radiative losses . [12]

The radiation is not the only mechanism of energy loss in the corona: since the plasma is highly ionized and the magnetic field is well organized, the thermal conduction is a competitive process. The energy losses due to the thermal conduction are of the same order of coronal radiative losses. The energy released in the corona which is not radiated externally is conducted back towards the chromosphere along the arcs. In the transition region where the temperature is about 104 -105 K, radiative losses are too high to be balanced by any form of mechanical heating . [13] The very high temperature gradient observed in this range of temperatures increases the conductive flux in order to supply for the irradiated power. In other words, the transition region is so steep (the temperature increases from 10kK to 1MK in a distance of the order of 100 km) because the thermal conduction from the superior hotter atmosphere must balance the high radiative losses, as indicated to the numerous emission lines, which are formed from ionized atoms (oxygen, carbon, iron and so on).

The solar convection can supply the required heating, but in a way not yet known in detail. Actually, it is still unclear how this energy is transmitted from the chromosphere(where it could be absorbed or reflected), and then dissipated into the corona instead of dispersing into the solar wind. Furthermore, where does it occur exactly ? : in the low corona or mainly in the higher corona, where the magnetic field lines open into the space heliosphere, driving the solar wind into the Solar System.

The importance of the magnetic field is recognized by all the scientists: there is a strict correspondence between the active regions, where the irradiated flux is higher (especially in the X-rays), and the regions of intense magnetic field. [14]

The problem of coronal heating is complicated by the fact that different coronal features require very different amounts of energy. It is difficult to believe that very dynamic and energetic phenomena such as flares and coronal mass ejections share the same source of energy with stable structures covering very large areas on the Sun: if nanoflares would have heated the whole corona, then they should be distributed so uniformly so as to look like a steady heating. Flares themselves – and microflares, which when studied in detail seem to have the same physics – are highly intermittent in space and time, and would not therefore be relevant to any requirement for continuous heating. On the other hand, in order to explain very rapid and energetic phenomena such as solar flares, the magnetic field should be structured on distances of the order of the metre.

Solar Flare and Coronal Mass Ejection (STEREO) Solar Flare and Coronal Mass Ejection 2010-02-12.jpg
Solar Flare and Coronal Mass Ejection (STEREO)

The Alfvén waves generated by convective motions in the photosphere can go through the chromosphere and transition region, carrying an energy flux comparable to that required to sustain the corona. Anyway, wavetrain periods observed in the high chromosphere and in the lower transition region are of the order of 3-5 min. These times are longer than the time taken by Alfvén waves to cross a typical coronal loop. This means that most of the dissipative mechanisms may provide enough energy only at distances further from the solar corona. More probably, the Alfvén waves are responsible for the acceleration of the solar wind in coronal holes.

The theory initially developed by Parker of micro-nanoflares is one of those explaining the heating of the corona as the dissipation of electric currents generated by a spontaneous relaxation of the magnetic field towards a configuration of lower energy. The magnetic energy is thus transformed into Joule heating. The braiding of the field lines of the coronal magnetic flux tubes provokes events of magnetic reconnection with a consequent change of the magnetic field at small length-scales without a simultaneous alteration of the magnetic field lines at large length-scales. In this way it can be explained why coronal loops are stable and so hot at the same time.

The Ohmic dissipation by currents could be a valid alternative to explain the coronal activity. For many years the magnetic reconnection has been invoked as the main power source of solar flares. However this heating mechanism is not very efficient in large current sheets, while more energy is released in turbulent regimes when nanoflares happen at much smaller scale-lengths, where non-linear effects are not negligible. [15]

See also

Related Research Articles

Stellar corona Aura of plasma that surrounds the Sun and other stars

A corona is an aura of plasma that surrounds the Sun and other stars. The Sun's corona extends millions of kilometres into outer space and is most easily seen during a total solar eclipse, but it is also observable with a coronagraph. Spectroscopy measurements indicate strong ionization in the corona and a plasma temperature in excess of 1000000 kelvin, much hotter than the surface of the Sun.

X-ray astronomy Branch of astronomy that uses X-ray observation

X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites. X-ray astronomy uses a type of space telescope that can see x-ray radiation which standard optical telescopes, such as the Mauna Kea Observatories, cannot.

Solar flare Sudden flash of increased brightness on the Sun

A solar flare is a sudden flash of increased brightness on the Sun, usually observed near its surface and in close proximity to a sunspot group. Powerful flares are often, but not always, accompanied by a coronal mass ejection. Even the most powerful flares are barely detectable in the total solar irradiance.

Chromosphere Layer in the Suns atmosphere above the photosphere

The chromosphere is the second of the three main layers in the Sun's atmosphere and is roughly 3,000 to 5,000 kilometers deep. Its rosy red color is only apparent during eclipses. The chromosphere sits just above the photosphere and below the solar transition region. The layer of the chromosphere atop the photosphere is homogeneous. A forest of hairy-appearing spicules rise from the homogeneous layer, some of which extend 10,000 km into the corona above.

Coronal mass ejection Significant release of plasma and magnetic field from the solar corona

A coronal mass ejection (CME) is a significant release of plasma and accompanying magnetic field from the solar corona. They often follow solar flares and are normally present during a solar prominence eruption. The plasma is released into the solar wind, and can be observed in coronagraph imagery. The term "mass" in the name doesn't refer to the size but instead that mass is being ejected rather than just photons, as smaller solar flares often only release.

Alfvén wave

In plasma physics, an Alfvén wave, named after Hannes Alfvén, is a type of magnetohydrodynamic wave in which ions oscillate in response to a restoring force provided by an effective tension on the magnetic field lines.

Magnetic reconnection

Magnetic reconnection is a physical process occurring in highly conducting plasmas in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle acceleration. Magnetic reconnection occurs on timescales intermediate between slow resistive diffusion of the magnetic field and fast Alfvénic timescales.

Solar prominence Gaseous outburst from the sun

A prominence, referred to as a filament when viewed against the solar disk, is a large, bright, gaseous feature extending outward from the Sun's surface, often in a loop shape. Prominences are anchored to the Sun's surface in the photosphere, and extend outwards into the solar corona. While the corona consists of extremely hot ionized gases, known as plasma, which do not emit much visible light, prominences contain much cooler plasma, similar in composition to that of the chromosphere. The prominence plasma is typically a hundred times more luminous and dense than the coronal plasma.

Eric Ronald Priest is Emeritus Professor at St Andrews University, where he previously held the Gregory Chair of Mathematics and a Bishop Wardlaw Professorship.

Coronal loop Structure in the lower corona and transition region of the Sun

Coronal loops are huge loops of magnetic field beginning and ending on the Sun's visible surface (photosphere) projecting into the solar atmosphere (corona). Hot glowing ionized gas (plasma) trapped in the loops makes them visible. Coronal loops range widely in size up to several thousand kilometers long. They are transient features of the solar surface, forming and dissipating over periods of seconds to days. They form the basic structure of the lower corona and transition region of the Sun. These highly structured loops are a direct consequence of the twisted solar magnetic flux within the solar body. Coronal loops are associated with sunspots; the two "footpoints" where the loop passes through the sun's surface are often sunspots. This is because sunspots occur at regions of high magnetic field. The high magnetic field where the loop passes through the surface forms a barrier to convection currents, which bring hot plasma from the interior to the sun's surface, so the plasma in these high field regions is cooler than the rest of the sun's surface, appearing as a dark spot when viewed against the rest of the photosphere. The population of coronal loops varies with the 11 year solar cycle, which also influences the number of sunspots.

Stellar magnetic field Magnetic field generated by the convective motion of conductive plasma inside a star

A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized magnetic field exerts a force on the plasma, effectively increasing the pressure without a comparable gain in density. As a result, the magnetized region rises relative to the remainder of the plasma, until it reaches the star's photosphere. This creates starspots on the surface, and the related phenomenon of coronal loops.

Aditya-L1 Space mission to Sun

Aditya or Aditya-L1 is a planned coronagraphy spacecraft to study solar atmosphere, currently being designed and developed by Indian Space Research Organisation (ISRO) and various other Indian research institutes. It will be inserted in a halo orbit around the L1 point between Earth and Sun where it will study solar atmosphere, solar magnetic storms and it's impact on environment around Earth.

Coronal radiative losses

In astronomy and in astrophysics, for radiative losses of the solar corona, it is meant the energy flux radiated from the external atmosphere of the Sun, and, in particular, the processes of production of the radiation coming from the solar corona and transition region, where the plasma is optically-thin. On the contrary, in the chromosphere, where the temperature decreases from the photospheric value of 6000 K to the minimum of 4400 K, the optical depth is about 1, and the radiation is thermal.

AZ Cancri Star in the constellation Cancer

AZ Cancri (AZ Cnc) is a M-type flare star in the constellation Cancer. It has an apparent visual magnitude of approximately 17.59.

The Neupert effect refers to an empirical tendency for high-energy ('hard') X-ray emission to coincide temporally with the rate of rise of lower-energy ('soft') X-ray emission of a solar flare. Here 'hard' and 'soft' mean above and below an energy of about 10 keV to solar physicists, though in non-solar X-ray astronomy one typically sets this boundary at a lower energy.

Solar phenomena Natural phenomena occurring within the magnetically heated outer atmospheres in the Sun

Solar phenomena are the natural phenomena occurring within the magnetically heated outer atmospheres in the Sun. These phenomena take many forms, including solar wind, radio wave flux, energy bursts such as solar flares, coronal mass ejection or solar eruptions, coronal heating and sunspots.

Supra-arcade downflows Sunward-traveling plasma voids observed in the Sun’s outer atmosphere

Supra-arcade downflows (SADs) are sunward-traveling plasma voids that are sometimes observed in the Sun's outer atmosphere, or corona, during solar flares. In solar physics, an “arcade” refers to a bundle of coronal loops, and the prefix “supra” indicates that the downflows appear above flare arcades. They were first described in 1999 using the Soft X-ray Telescope (SXT) on board the Yohkoh satellite. SADs are byproducts of the magnetic reconnection process that drives solar flares, but their precise cause remains unknown.

Jiong Qiu (邱炯) is a Chinese-born American astrophysicist who won the Karen Harvey Prize for her work in solar flares.

Philippa K. Browning is a Professor of Astrophysics in the Jodrell Bank Centre for Astrophysics at the University of Manchester. She specialises in the mathematical modelling of fusion plasmas.

Solar radio emission refers to radio waves that are naturally produced by the Sun, primarily from the lower and upper layers of the atmosphere called the chromosphere and corona, respectively. The Sun produces radio emissions through four known mechanisms, each of which operates primarily by converting the energy of moving electrons into radiation. The four emission mechanisms are thermal bremsstrahlung (free-free) emission, gyromagnetic emission, plasma emission, and electron-cyclotron maser emission. The first two are incoherent mechanisms, which means that they are the summation of radiation generated independently by many individual particles. These mechanisms are primarily responsible for the persistent "background" emissions that slowly vary as structures in the atmosphere evolve. The latter two processes are coherent mechanisms, which refers to special cases where radiation is efficiently produced at a particular set of frequencies. Coherent mechanisms can produce much larger brightness temperatures (intensities) and are primarily responsible for the intense spikes of radiation called solar radio bursts, which are byproducts of the same processes that lead to other forms of solar activity like solar flares and coronal mass ejections.

References

  1. "NASA - Tiny Flares Responsible for Outsized Heat of Sun's Atmosphere" . Retrieved 23 September 2014.
  2. Cargill, P. J.; Warren, H. P.; Bradshaw, S. J. (2015-05-28). The original reference to Gold's discussion is not available online, but is the second reference made within the paper itself. "Modelling nanoflares in active regions and implications for coronal heating mechanisms". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 373 (2042): 20140260. Bibcode:2015RSPTA.37340260C. doi:10.1098/rsta.2014.0260. PMC   4410551 . PMID   25897093.
  3. Parker, Eugene N. (1972). "Topological Dissipation and the Small-scale Fields in Turbulent Gases". The Astrophysical Journal. 174: 499. Bibcode:1972ApJ...174..499P. doi:10.1086/151512.
  4. Klimchuk, Jim (2006). "On Solving the Coronal Heating Problem". Solar Physics. 234 (1): 41–77. arXiv: astro-ph/0511841 . Bibcode:2006SoPh..234...41K. doi:10.1007/s11207-006-0055-z. S2CID   119329755.
  5. Winebarger, Amy; Warren, Harry; Schmelz, Joan; Cirtain, Jonathan; Mulu-Moor, Fana; Golub, Leon; Kobayashi, Ken (2012). "Defining the Blind-Spot of Hinode EIS and XRT Temperature Measurements". The Astrophysical Journal Letters. 746 (2): L17. Bibcode:2012ApJ...746L..17W. doi:10.1088/2041-8205/746/2/L17.
  6. Brosius, Jeffrey; Adrian, Daw; Rabin, D.M. (2014). "Pervasive Faint Fe XIX Emission from a Solar Active Region Observed with EUNIS-13: Evidence for Nanoflare Heating". The Astrophysical Journal. 790 (2): 112. Bibcode:2014ApJ...790..112B. doi: 10.1088/0004-637X/790/2/112 .
  7. Datlowe, D.W.; Elcan, M. J.; Hudson, H. S. (1974). "OSO-7 observations of solar x-rays in the energy range 10?100 keV". Solar Physics. 39 (1): 155–174. Bibcode:1974SoPh...39..155D. doi:10.1007/BF00154978. S2CID   122521337.
  8. Lin, R. P.; Schwartz, R. A.; Kane, S. R.; Pelling, R. M.; et al. (1984). "Solar hard X-ray microflares". The Astrophysical Journal. 283: 421. Bibcode:1984ApJ...283..421L. doi:10.1086/162321.
  9. Dennis, Brian R. (1985). "Solar hard X-ray bursts". Solar Physics. 100 (1–2): 465–490. Bibcode:1985SoPh..100..465D. doi:10.1007/BF00158441. S2CID   189827655.
  10. Porter, J. G.; Fontenla, J. M.; Simnett, G. M. (1995). "Simultaneous ultraviolet and X-ray observations of solar microflares". The Astrophysical Journal. 438: 472. Bibcode:1995ApJ...438..472P. doi:10.1086/175091.
  11. Hudson; H.S. (1991). "Solar flares, microflares, nanoflares, and coronal heating". Solar Physics. 133 (2): 357. Bibcode:1991SoPh..133..357H. doi:10.1007/BF00149894. S2CID   120428719.
  12. Withbroe, G. L.; Noyes, R. W. (1977). "Mass and energy flow in the solar chromosphere and corona". Annual Review of Astronomy and Astrophysics. 15: 363–387. Bibcode:1977ARA&A..15..363W. doi:10.1146/annurev.aa.15.090177.002051.
  13. Priest, Eric (1982). Solar Magneto-hydrodynamics. D.Reidel Publishing Company, Dordrecht, Holland. p. 208.
  14. Poletto G; Vaiana GS; Zombeck MV; Krieger AS; et al. (Sep 1975). "A comparison of coronal X-ray structures of active regions with magnetic fields computed from photospheric observations". Solar Physics. 44 (9): 83–99. Bibcode:1975SoPh...44...83P. doi:10.1007/BF00156848. S2CID   121538547.
  15. Rappazzo, A. F.; Velli, M.; Einaudi, G.; Dahlburg, R. B. (2008). "Nonlinear Dynamics of the Parker Scenario for Coronal Heating". The Astrophysical Journal. 677 (2): 1348–1366. arXiv: 0709.3687 . Bibcode:2008ApJ...677.1348R. doi:10.1086/528786. S2CID   15598925.