Olpidiaceae

Last updated

Olpidiaceae
Scientific classification
Kingdom:
Division:
Olpidiomycota
Class:
Olpidiomycetes
Order:
Olpidiales
Family:
Olpidiaceae

Schröter, 1889
Genera

Olpidiaceae is a fungal plant pathogen family of genera that was placed in the order Olpidiales. [1]

Contents

Taxonomy

Based on the work of Philippe Silar [1] and "The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research" [2] and synonyms from "Part 1- Virae, Prokarya, Protists, Fungi". [3]

Related Research Articles

<span class="mw-page-title-main">Desmothoracid</span> Family of single-celled organisms

Order Desmothoracida, the desmothoracids, are a group of heliozoan protists, usually sessile and found in freshwater environments. The adult is a spherical cell around 10-20 μm in diameter surrounded by a perforated organic lorica, or shell, with many radial pseudopods projecting through the holes to capture food. These are supported by small bundles of microtubules that arise near a point on the nuclear membrane. Unlike other heliozoans, the microtubules are not in any regular geometric array, there does not appear to be a microtubule organizing center, and there is no distinction between the outer and inner cytoplasm.

<span class="mw-page-title-main">Noctilucales</span> Order of single-celled organisms

The Noctilucales are an order of marine dinoflagellates. They differ from most others in that the mature cell is diploid and its nucleus does not show a dinokaryotic organization. They show gametic meiosis.

The Oxymonads are a group of flagellated protozoa found exclusively in the intestines of termites and other wood-eating insects. Along with the similar parabasalid flagellates, they harbor the symbiotic bacteria that are responsible for breaking down cellulose.

The Ascetosporea are a group of eukaryotes that are parasites of animals, especially marine invertebrates. The two groups, the haplosporids and paramyxids, are not particularly similar morphologically, but consistently group together on molecular trees, which place them near the base of the Cercozoa. Both produce spores without the complex structures found in similar groups.

<span class="mw-page-title-main">Spironemidae</span> Family of heterotrophic flagellates, in the group Hemimastigophora

Spironemidae is a family of heterotrophic flagellates, in the group Hemimastigophora. They vary in size and shape from the ellipsoid Hemimastix amphikineta to the vermiform Spironema terricola, and are united by the possession of two rows of cilia, called kineties.

<span class="mw-page-title-main">Archamoebae</span> Phylum of protists

The Archamoebae are a group of protists originally thought to have evolved before the acquisition of mitochondria by eukaryotes. They include genera that are internal parasites or commensals of animals. A few species are human pathogens, causing diseases such as amoebic dysentery. The other genera of archamoebae live in freshwater habitats and are unusual among amoebae in possessing flagella. Most have a single nucleus and flagellum, but the giant amoeba Pelomyxa has many of each.

<span class="mw-page-title-main">Rhizophydiales</span> Order of fungi

Rhizophydiales are an important group of chytrid fungi. They are found in soil as well as marine and fresh water habitats where they function as parasites and decomposers.

<span class="mw-page-title-main">Monoblepharidomycetes</span> Class of fungi

Members of the Monoblepharidomycetes have a filamentous thallus that is either extensive or simple and unbranched. They frequently have a holdfast at the base. In contrast to other taxa in their phylum, some reproduce using autospores, although many do so through zoospores. Oogamous sexual reproduction may also occur.

<span class="mw-page-title-main">Blastocladiomycota</span> Phylum of flagellated fungi

Blastocladiomycota is one of the currently recognized phyla within the kingdom Fungi. Blastocladiomycota was originally the order Blastocladiales within the phylum Chytridiomycota until molecular and zoospore ultrastructural characters were used to demonstrate it was not monophyletic with Chytridiomycota. The order was first erected by Petersen for a single genus, Blastocladia, which was originally considered a member of the oomycetes. Accordingly, members of Blastocladiomycota are often referred to colloquially as "chytrids." However, some feel "chytrid" should refer only to members of Chytridiomycota. Thus, members of Blastocladiomyota are commonly called "blastoclads" by mycologists. Alternatively, members of Blastocladiomycota, Chytridiomycota, and Neocallimastigomycota lumped together as the zoosporic true fungi. Blastocladiomycota contains 5 families and approximately 12 genera. This early diverging branch of kingdom Fungi is the first to exhibit alternation of generations. As well, two (once) popular model organisms—Allomyces macrogynus and Blastocladiella emersonii—belong to this phylum.

<span class="mw-page-title-main">Malawimonadidae</span>

Malawimonadidae is a family of unicellular eukaryotes of outsize importance in understanding eukaryote phylogeny.

Phaeothamniophycidae is a subclass of heterokont algae. It contains two orders, Phaeothamniales and Pleurochloridellales, and consists of species separated from Chrysophyceae.

<span class="mw-page-title-main">Dictyochophyceae</span> Class of single-celled organisms

Dictyochophyceae sensu lato is a photosynthetic lineage of heterokont algae.

<span class="mw-page-title-main">Dinophyceae</span> Class of single-celled organisms

Dinophyceae is a class of dinoflagellates.

<span class="mw-page-title-main">Holomycota</span> Clade containing fungi and some protists

Holomycota or Nucletmycea are a basal Opisthokont clade as sister of the Holozoa. It consists of the Cristidiscoidea and the kingdom Fungi. The position of nucleariids, unicellular free-living phagotrophic amoebae, as the earliest lineage of Holomycota suggests that animals and fungi independently acquired complex multicellularity from a common unicellular ancestor and that the osmotrophic lifestyle was originated later in the divergence of this eukaryotic lineage. Opisthosporidians is a recently proposed taxonomic group that includes aphelids, Microsporidia and Cryptomycota, three groups of endoparasites.

Olpidium is a fungal genus in the family Olpidiaceae. Members of Olpidium are zoosporic pathogens of plants, animals, fungi, and oomycetes.

<span class="mw-page-title-main">Entomophthoromycota</span> Division of fungi

Entomophthoromycota is a division of kingdom fungi. In 2007, it was placed at the taxonomic rank of subphylum in the most recent revision of the entire fungus kingdom. In 2012, it was raised to the rank of phylum as "Entomophthoromycota" in a scientific paper by Richard A. Humber 2012. Divided into three classes and six families, it contains over 250 species that are mostly arthropod pathogens or soil- and litter-borne saprobes.

<span class="mw-page-title-main">Aphelida</span>

Aphelida is a phylum of Fungi that appears to be the sister to true fungi.

<span class="mw-page-title-main">Bigyromonadea</span> Class of protists

Bigyromonadea is a recently described non-photosynthetic lineage of Heterokonts that at present contains only one species.

<span class="mw-page-title-main">Basidiobolomycetes</span> Class of fungi

Basidiobolomycetes is one of the currently recognized classes within the kingdom Fungi, and subdivision Basidiobolomycotina.

References

  1. 1 2 Silar P (2016). Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes. HAL. p. 462. ISBN   978-2-9555841-0-1.
  2. Esser K (2014). The Mycota VII A: Systematics and Evolution (2nd ed.). Springer. p. 461. ISBN   978-3-642-55317-2.
  3. "Part 1- Virae, Prokarya, Protists, Fungi". Collection of genus-group names in a systematic arrangement. Archived from the original on 14 August 2016. Retrieved 30 June 2016.