Omecamtiv mecarbil

Last updated

Omecamtiv mecarbil
Omecamtiv mecarbil.svg
Clinical data
Other namesCK-1827452
ATC code
Identifiers
  • Methyl 4-[(2-fluoro-3-{[N-(6-methylpyridin-3-yl)carbamoyl]amino}phenyl)methyl]piperazine-1-carboxylate
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
PDB ligand
CompTox Dashboard (EPA)
Chemical and physical data
Formula C20H24FN5O3
Molar mass 401.442 g·mol−1
3D model (JSmol)
  • O=C(Nc1ccc(nc1)C)Nc2c(F)c(ccc2)CN3CCN(C(=O)OC)CC3
  • InChI=1S/C20H24FN5O3/c1-14-6-7-16(12-22-14)23-19(27)24-17-5-3-4-15(18(17)21)13-25-8-10-26(11-9-25)20(28)29-2/h3-7,12H,8-11,13H2,1-2H3,(H2,23,24,27)
  • Key:RFUBTTPMWSKEIW-UHFFFAOYSA-N

Omecamtiv mecarbil (INN [1] ), previously referred to as CK-1827452, is a cardiac-specific myosin activator. It is an experimental drug being studied for a potential role in the treatment of left ventricular systolic heart failure. [2]

Contents

Systolic heart failure involves a loss of effective actin-myosin cross bridges in the myocytes (heart muscle cells) of the left ventricle, which leads to a decreased ability of the heart to move blood through the body. This causes peripheral edema (blood pooling), which the sympathetic nervous system tries to correct [3] by overstimulating the cardiac myocytes, leading to left ventricular hypertrophy, another characteristic of chronic heart failure.

inotropic therapies work by increasing the force of cardiac contraction, such as through calcium conduction or modulating adrenoreceptors. But these are limited by adverse events, including arrhythmias related to increased myocardial oxygen consumption, desensitization of adrenergic receptors, and altering intracellular calcium levels. [4] Inotropes are also thought to be associated with worse prognosis. [5]

Mechanism of action

Cardiac myocytes contract through a cross-bridge cycle between the myofilaments, actin and myosin. Chemical energy in the form of ATP is converted into mechanical energy which allows myosin to strongly bind to actin and produce a power stroke resulting in sarcomere shortening/contraction. [6] Omecamtiv mecarbil specifically targets and activates myocardial ATPase and improves energy utilization. This enhances effective myosin cross-bridge formation and duration, while the velocity of contraction remains the same. [7] Specifically, it increases the rate of phosphate release from myosin by stabilizing the pre-powerstroke and the phosphate release states, [8] thereby accelerating the rate-determining step of the cross-bridge cycle, which is the transition of the actin-myosin complex from the weakly bound to the strongly bound state. [9] [2] Furthermore, once myosin is bound to actin, it stays bound dramatically longer in the presence of omecamtiv mecarbil. [10] [11] [8] The combination of increased and prolonged cross-bridge formation prolongs myocardial contraction. Thus, the overall clinical result of omecamtiv mecarbil is an increase in left ventricular systolic ejection time and ejection fraction. [7] [9]

There is a slight decrease in heart rate while myocardial oxygen consumption is unaffected. The increased cardiac output is independent of intracellular calcium and cAMP levels. [4] [12] Thus omecamtiv mecarbil improves systolic function by increasing the systolic ejection duration and stroke volume, without consuming more ATP energy, oxygen or altering intracellular calcium levels causing an overall improvement in cardiac efficiency. [7]

Clinical trials

Experimental studies on rats and dogs, proved the efficacy and mechanism of action of omecamtiv mecarbil. [4] Clinical studies on humans have shown there is a direct linear relationship between dose and systolic ejection time. [2] [13] [14] The dose-dependent effects persisted throughout the entire trial, suggesting that desensitization does not occur. The maximum tolerated dose was observed to be an infusion of 0.5 mg/kg/h. Adverse effects, such as ischemia, were only seen at doses beyond this level, due to extreme lengthening of systolic ejection time. [2]

Omecamtiv mecarbil effectively relieves symptoms and enhances the quality of life of systolic heart failure patients. It improved cardiac performance in short-term studies; [2] [3] however, while the drug reduced the risk of hospitalization or other urgent care for heart failure by 8% in high-risk patients in the Phase III clinical trial GALACTIC-HF, patients receiving the drug did not live any longer. [15] The drug also did not improve exercise intolerance in heart failure patients in the Phase III METEORIC trial. [16] The METEORIC-HF randomized clinical trial found that omecamtiv mecarbil does not significantly improve exercise capacity. [17]

Myosin inhibition

Research groups found that omecamtiv mecarbil actually inhibits myosin by enhancing the duty ratio, increasing calcium sensitivity and slowing force development. [18] It may still activate muscle as a whole however despite suppressing the working stroke of myosin. [19]

History

The US Food and Drug Administration (FDA) granted, in May 2020, a fast-track designation for omecamtiv mecarbil. [20]

Related Research Articles

<span class="mw-page-title-main">Premature ventricular contraction</span> Skipped beat with ventricular origin

A premature ventricular contraction (PVC) is a common event where the heartbeat is initiated by Purkinje fibers in the ventricles rather than by the sinoatrial node. PVCs may cause no symptoms or may be perceived as a "skipped beat" or felt as palpitations in the chest. PVCs do not usually pose any danger.

<span class="mw-page-title-main">Systole</span> Part of the cardiac cycle when a heart chamber contracts

Systole is the part of the cardiac cycle during which some chambers of the heart contract after refilling with blood.

<span class="mw-page-title-main">Cardiac muscle</span> Muscular tissue of heart in vertebrates

Cardiac muscle is one of three types of vertebrate muscle tissues, with the other two being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of the heart. The cardiac muscle (myocardium) forms a thick middle layer between the outer layer of the heart wall and the inner layer, with blood supplied via the coronary circulation. It is composed of individual cardiac muscle cells joined by intercalated discs, and encased by collagen fibers and other substances that form the extracellular matrix.

<span class="mw-page-title-main">Troponin</span> Protein complex

Troponin, or the troponin complex, is a complex of three regulatory proteins that are integral to muscle contraction in skeletal muscle and cardiac muscle, but not smooth muscle. Measurements of cardiac-specific troponins I and T are extensively used as diagnostic and prognostic indicators in the management of myocarditis, myocardial infarction and acute coronary syndrome. Blood troponin levels may be used as a diagnostic marker for stroke or other myocardial injury that is ongoing, although the sensitivity of this measurement is low.

<span class="mw-page-title-main">Frank–Starling law</span> Relationship between stroke volume and end diastolic volume

The Frank–Starling law of the heart represents the relationship between stroke volume and end diastolic volume. The law states that the stroke volume of the heart increases in response to an increase in the volume of blood in the ventricles, before contraction, when all other factors remain constant. As a larger volume of blood flows into the ventricle, the blood stretches cardiac muscle, leading to an increase in the force of contraction. The Frank-Starling mechanism allows the cardiac output to be synchronized with the venous return, arterial blood supply and humoral length, without depending upon external regulation to make alterations. The physiological importance of the mechanism lies mainly in maintaining left and right ventricular output equality.

An inotrope or inotropic is a drug or any substance that alters the force or energy of muscular contractions. Negatively inotropic agents weaken the force of muscular contractions. Positively inotropic agents increase the strength of muscular contraction.

<span class="mw-page-title-main">Sotalol</span> Medication

Sotalol, sold under the brand name Betapace among others, is a medication used to treat and prevent abnormal heart rhythms. Evidence does not support a decreased risk of death with long term use. It is taken by mouth or given by injection into a vein.

<span class="mw-page-title-main">Muscle contraction</span> Activation of tension-generating sites in muscle

Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. The termination of muscle contraction is followed by muscle relaxation, which is a return of the muscle fibers to their low tension-generating state.

In cardiology, ventricular remodeling refers to changes in the size, shape, structure, and function of the heart. This can happen as a result of exercise or after injury to the heart muscle. The injury is typically due to acute myocardial infarction, but may be from a number of causes that result in increased pressure or volume, causing pressure overload or volume overload on the heart. Chronic hypertension, congenital heart disease with intracardiac shunting, and valvular heart disease may also lead to remodeling. After the insult occurs, a series of histopathological and structural changes occur in the left ventricular myocardium that lead to progressive decline in left ventricular performance. Ultimately, ventricular remodeling may result in diminished contractile (systolic) function and reduced stroke volume.

<span class="mw-page-title-main">T-tubule</span> Extensions in cell membrane of muscle fibres

T-tubules are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells. With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.

Myocardial contractility represents the innate ability of the heart muscle (cardiac muscle or myocardium) to contract. It is the maximum attainable value for the force of contraction of a given heart. The ability to produce changes in force during contraction result from incremental degrees of binding between different types of tissue, that is, between filaments of myosin (thick) and actin (thin) tissue. The degree of binding depends upon the concentration of calcium ions in the cell. Within an in vivo intact heart, the action/response of the sympathetic nervous system is driven by precisely timed releases of a catecholamine, which is a process that determines the concentration of calcium ions in the cytosol of cardiac muscle cells. The factors causing an increase in contractility work by causing an increase in intracellular calcium ions (Ca++) during contraction.

<span class="mw-page-title-main">Milrinone</span> Chemical compound

Milrinone, sold under the brand name Primacor, is a pulmonary vasodilator used in patients who have heart failure. It is a phosphodiesterase 3 inhibitor that works to increase the heart's contractility and decrease pulmonary vascular resistance. Milrinone also works to vasodilate which helps alleviate increased pressures (afterload) on the heart, thus improving its pumping action. While it has been used in people with heart failure for many years, studies suggest that milrinone may exhibit some negative side effects that have caused some debate about its use clinically.

<span class="mw-page-title-main">Amrinone</span> Chemical compound

Amrinone, also known as inamrinone, and sold as Inocor, is a pyridine phosphodiesterase 3 inhibitor. It is a drug that may improve the prognosis in patients with congestive heart failure. Amrinone has been shown to increase the contractions initiated in the heart by high-gain calcium induced calcium release (CICR). The positive inotropic effect of amrinone is mediated by the selective enhancement of high-gain CICR, which contributes to the contraction of myocytes by phosphorylation through cAMP dependent protein kinase A (PKA) and Ca2+ calmodulin kinase pathways.

Within the muscle tissue of animals and humans, contraction and relaxation of the muscle cells (myocytes) is a highly regulated and rhythmic process. In cardiomyocytes, or cardiac muscle cells, muscular contraction takes place due to movement at a structure referred to as the diad, sometimes spelled "dyad." The dyad is the connection of transverse- tubules (t-tubules) and the junctional sarcoplasmic reticulum (jSR). Like skeletal muscle contractions, Calcium (Ca2+) ions are required for polarization and depolarization through a voltage-gated calcium channel. The rapid influx of calcium into the cell signals for the cells to contract. When the calcium intake travels through an entire muscle, it will trigger a united muscular contraction. This process is known as excitation-contraction coupling. This contraction pushes blood inside the heart and from the heart to other regions of the body.

The Anrep effect is an autoregulation method in which myocardial contractility increases with afterload. It was experimentally determined that increasing afterload caused a proportional linear increase in ventricular inotropy. This effect is found in denervated heart preparations, such as the Starling Preparation, and represents an intrinsic autoregulation mechanism.

<span class="mw-page-title-main">Troponin C type 1</span> Protein-coding gene in the species Homo sapiens

Troponin C, also known as TN-C or TnC, is a protein that resides in the troponin complex on actin thin filaments of striated muscle and is responsible for binding calcium to activate muscle contraction. Troponin C is encoded by the TNNC1 gene in humans for both cardiac and slow skeletal muscle.

Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.

CXL 1020 is an experimental drug that is being investigated as a treatment for acute decompensated heart failure. CXL 1020 functions as a nitroxyl donor; nitroxyl is the reduced, protonated version of nitric oxide. Nitroxyl is capable of enhancing left ventricular contractility without increasing heart rate by modifying normal Ca2+ cycling through the sarcoplasmic reticulum as well as increasing the sensitivity of cardiac myofilaments to Ca2+.

<span class="mw-page-title-main">Istaroxime</span> Chemical compound

Istaroxime is an investigational drug under development for treatment of acute decompensated heart failure

<span class="mw-page-title-main">Pathophysiology of heart failure</span>

The main pathophysiology of heart failure is a reduction in the efficiency of the heart muscle, through damage or overloading. As such, it can be caused by a wide number of conditions, including myocardial infarction, hypertension and cardiac amyloidosis. Over time these increases in workload will produce changes to the heart itself:

References

  1. World Health Organization (2010). "International nonproprietary names for pharmaceutical substances (INN): recommended INN: list 64". WHO Drug Information. 24 (3). hdl: 10665/74577 .
  2. 1 2 3 4 5 Teerlink JR (December 2009). "A novel approach to improve cardiac performance: cardiac myosin activators". Heart Failure Reviews. 14 (4): 289–298. doi:10.1007/s10741-009-9135-0. PMC   2772957 . PMID   19234787.
  3. 1 2 Dyke D, Koelling T (2008). "Heart failure due to left ventricular systolic dysfunction". In Eagle KA, Baliga RR (eds.). Practical Cardiology. Philadelphia: Lippincott Williams & Wilkins. pp. 246–285. ISBN   978-0-7817-7294-5.
  4. 1 2 3 Shen YT, Malik FI, Zhao X, Depre C, Dhar SK, Abarzúa P, et al. (July 2010). "Improvement of cardiac function by a cardiac Myosin activator in conscious dogs with systolic heart failure". Circulation: Heart Failure. 3 (4): 522–527. doi: 10.1161/CIRCHEARTFAILURE.109.930321 . PMID   20498236.
  5. Nieminen M (March 2005). "Pharmacological options for acute heart failure syndromes: current treatments and unmet needs". Eur Heart J. 7: B20-4. doi: 10.1093/eurheartj/sui009 .
  6. Bers DM (January 2002). "Cardiac excitation-contraction coupling". Nature. 415 (6868): 198–205. Bibcode:2002Natur.415..198B. doi:10.1038/415198a. PMID   11805843. S2CID   4337201.
  7. 1 2 3 Malik F, Teerlink J, Escandon R, Clake C, Wolff A (2006). "The Selective Cardiac Myosin Activator, CK-1827452, a Calcium-Independent Inotrope, Increases Left Ventricular Systolic Function by Increasing Ejection Time Rather than the Velocity of Contraction". Circulation. 114 (18 Suppl): 441.
  8. 1 2 Planelles-Herrero VJ, Hartman JJ, Robert-Paganin J, Malik FI, Houdusse A (August 2017). "Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil". Nature Communications. 8 (1): 190. Bibcode:2017NatCo...8..190P. doi:10.1038/s41467-017-00176-5. PMC   5543065 . PMID   28775348.
  9. 1 2 Malik FI, Hartman JJ, Elias KA, Morgan BP, Rodriguez H, Brejc K, et al. (March 2011). "Cardiac myosin activation: a potential therapeutic approach for systolic heart failure". Science. 331 (6023): 1439–1443. Bibcode:2011Sci...331.1439M. doi:10.1126/science.1200113. PMC   4090309 . PMID   21415352.
  10. Liu C, Kawana M, Song D, Ruppel KM, Spudich JA (June 2018). "Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level". Nature Structural & Molecular Biology. 25 (6): 505–514. doi:10.1038/s41594-018-0069-x. PMC   6092189 . PMID   29867217.
  11. Woody MS, Greenberg MJ, Barua B, Winkelmann DA, Goldman YE, Ostap EM (September 2018). "Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke". Nature Communications. 9 (1): 3838. Bibcode:2018NatCo...9.3838W. doi: 10.1038/s41467-018-06193-2 . PMC   6155018 . PMID   30242219.
  12. Teerlink JR, Metra M, Zacà V, Sabbah HN, Cotter G, Gheorghiade M, et al. (December 2009). "Agents with inotropic properties for the management of acute heart failure syndromes. Traditional agents and beyond". Heart Failure Reviews. 14 (4): 243–253. doi:10.1007/s10741-009-9153-y. PMC   2772951 . PMID   19876734.
  13. Teerlink JR, Clarke CP, Saikali KG, Lee JH, Chen MM, Escandon RD, et al. (August 2011). "Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study". Lancet. 378 (9792): 667–675. doi:10.1016/S0140-6736(11)61219-1. PMID   21856480. S2CID   13366846.
  14. Cleland JG, Teerlink JR, Senior R, Nifontov EM, Mc Murray JJ, Lang CC, et al. (August 2011). "The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial". Lancet. 378 (9792): 676–683. doi:10.1016/S0140-6736(11)61126-4. PMID   21856481. S2CID   9411257.
  15. Mast J (9 October 2020). "R&D Amgen's big cardiovascular bet with Cytokinetics hits PhIII primary but dramatically disappoints investors". Endpoints News. Archived from the original on 16 February 2022. Retrieved 16 February 2022.
  16. Carroll J (15 February 2022). "Cytokinetics' latest PhIII study of omecamtiv flops — kicking out another leg from under the market case it was building". Endpoints News. Archived from the original on 15 February 2022. Retrieved 16 February 2022.
  17. Lewis GD, Voors AA, Cohen-Solal A, Metra M, Whellan DJ, Ezekowitz JA, et al. (July 2022). "Effect of Omecamtiv Mecarbil on Exercise Capacity in Chronic Heart Failure With Reduced Ejection Fraction: The METEORIC-HF Randomized Clinical Trial". JAMA. 328 (3): 259–269. doi:10.1001/jama.2022.11016. PMC   9297119 . PMID   35852527. S2CID   250642747.
  18. Swenson AM, Tang W, Blair CA, Fetrow CM, Unrath WC, Previs MJ, et al. (March 2017). "Omecamtiv Mecarbil Enhances the Duty Ratio of Human β-Cardiac Myosin Resulting in Increased Calcium Sensitivity and Slowed Force Development in Cardiac Muscle". The Journal of Biological Chemistry. 292 (9): 3768–3778. doi: 10.1074/jbc.M116.748780 . PMC   5339759 . PMID   28082673.
  19. Woody MS, Greenberg MJ, Barua B, Winkelmann DA, Goldman YE, Ostap EM (September 2018). "Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke". Nature Communications. 9 (1): 3838. Bibcode:2018NatCo...9.3838W. doi:10.1038/s41467-018-06193-2. PMC   6155018 . PMID   30242219.
  20. "FDA Grants Fast Track Designation For Omecamtiv Mecarbil In Heart Failure" (Press release). Amgen. 8 May 2020. Archived from the original on 22 April 2024. Retrieved 11 May 2020.

Further reading